Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T13:17:57.581Z Has data issue: false hasContentIssue false

Low Temperature SiNx as a Sacrificial Layer in Novel Device Fabrication

Published online by Cambridge University Press:  22 February 2011

J. R. Lothian
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
F. Ren
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
S. J. Pearton
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
C. R. Abernathy
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
B. Tseng
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
W. S. Hobson
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Get access

Abstract

In this paper we will describe applications of a low temperature SiNx for the novel fabrication of lasers and FET's. Sidewall roughness which appears on dry etched semiconductor laser mesas is a common problem in laser fabrication. Protecting the sidewall with a low temperature PECVD SiNx can greatly reduce laser mesa roughness that occurs during dry etching of the mesa. Another application uses low temperature SiNx to extend the resolution of standard optical replication. Submicron gate fingers in field effect transistors can be fabricated by using this low-temperature SiNx deposition. By depositing SiNx on the photoresist gate pattern and etching back the SiNx leaving a sidewall, this will reduce the opening of gate features. Submicron gate length MESFETs have been demonstrated with this technique which showed comparable results to conventional submicron MESFETs fabricated with E-beam direct writing.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hou, D. T. C., Yen, M. F., Wynn, J. D. and Wilt, D. P., J. Electrochem. Soc. 136, 1828 (1989).Google Scholar
2. Chakrabarti, U. K., Pearton, S. J. and Ren, F., Semicond. Sci. Technol. 6, 408 (1991).Google Scholar
3. Bhat, R., Caneau, C., Zah, C. E., Ga, M. A. K., Bonner, W. A., Hwang, D. M., Schwartz, S. A., Menveal, S. G. and Favire, F. G., J. Cryst. Growth 107, 772 (1991).Google Scholar
4. Ren, F., Fullowan, T. R., Abernathy, C. R., Pearton, S. J., Smith, P. R., Kopf, R. F., Laskowski, E. J. and Lothian, J. R., Electron Lett. 27 1054 (1991).Google Scholar
5. Abernathy, C. R., Pearton, S. J. and Ha, N. T., J. Cryst. Growth 108 827 (1991).Google Scholar
6. Pearton, S. J., Chakrabarti, U. K., Kinsella, A. P., Johnson, D. and Constantine, C., Appl. Phys. Lett. 56 1424 (1990).Google Scholar
7. Roosmalen, A. J. van, Arendonk, A. P. M. van, Arends, H. T. and Schmidt, F., Proc. 5th Symp. Plasma Proc. (Electrochemical Society Pennington NJ 1985) Vol. 85–1, p. 527.Google Scholar
8. Bernacki, S. E. and Kosicki, B. B., Proc. 4th Symp. Plasma Proc. (Electrochemical Soc., Pennington NJ 1983) Vol. 83–10, p. 505.Google Scholar
9. Ren, F., Pearton, S. J., Lothian, J. R., Abernathy, C. R. and Hobson, W. S., J. Vac. Sci. Technol. B1O 2407 (1992).Google Scholar
10. Lothian, J. R., Ren, F., Pearton, S. J., Chakrabarti, U. K., Abernathy, C. R. and Katz, A., J. Vac. Sci. Technol. B10 2361 (1992).Google Scholar
11. Hutzakis, M., Canavello, B. and Show, J., IBM J. Rev. Dev. 24 452 (1980).Google Scholar