Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T14:01:13.308Z Has data issue: false hasContentIssue false

Low Temperature Reordering of Implanted Amorphous Si with Al Surface Layers

Published online by Cambridge University Press:  26 February 2011

L. S. Hung
Affiliation:
Department of Materials Science and Engineering Cornell University, Ithaca, NY 14853
S. H. Chen
Affiliation:
Department of Materials Science and Engineering Cornell University, Ithaca, NY 14853
J. W. Mayer
Affiliation:
Department of Materials Science and Engineering Cornell University, Ithaca, NY 14853
Get access

Abstract

Ion backscattering and channeling techniques, transmission and scanning electron microscopy, and secondary ion mass spectroscopy were used to investigate the reordering characteristics of implanted amorphous Si in the presence of an Al surface layer. It was found that reordering takes place at the temperature of about 400°C and is associated with an interfacial migration between Al and Si. The regrowth behavior appears to be a function of the initial annealing temperature and annealing sequence. High density of twin faults and substantial concentration of Al are observed in the regrown layers. We believe that the low temperature reordering is due to processes analogous to solid epitaxial growth with transport media.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lee, D. H., Hart, R. R., and Marsh, O. J., Appl. Phys. Lett., 20, 73 (1972).Google Scholar
2. Hung, L. S., Chen, S. H., and Mayer, J. W., in Thin Films and Interfaces II, eds. Baglin, J.E.E., Campbell, D. R., and Chu, W. K. (Elsevier, NY, 1984), p. 253.Google Scholar
3. Csepregi, L., Kennedy, E. F., Gallagher, T. J., Mayer, J. W., and Sigmon, T. W., J. Appl. Phys., 48, 4234 (1977).Google Scholar
4. Lau, S. S. and Van der Weg, W. F., in Thin Films–Interdiffusion and Reactions, eds. Poate, J. M., Tu, K. N., and Mayer, J. W. (John Wiley, NY, 1978), Chap. 12.Google Scholar
5. Lau, S. S., Mayer, J. W., and Tseng, W., in Handbook on Semiconductors, Vol.3, Materials Properties and Preparation, ed. Keller, S. P. (North Holland Amsterdam, 1980), Chap. 8.Google Scholar
6. Kennedy, E. F., Csepregi, L., Mayer, J. W., and Sigmon, T. W., J. Appl. Phys., 48, 4241 (1977).Google Scholar
7. Suni, I., Goltz, G., Grimaldi, M. G., Nicolet, M-A. and Lau, S. S., Appl. Phys. Lett., 40 (1982).Google Scholar
8. Ottaviani, G. and Majni, G., J. Appl. Phys., 50, 6865 (1979).CrossRefGoogle Scholar
9. Majni, G., Ottaviani, G., and Stuck, R., Thin Solid Films, 55, 235 (1978).10.1016/0040-6090(78)90054-8Google Scholar