No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
The growth of ZnO nanowire arrays on a variety of substrates using a chemical wet process is presented. ZnO seeds can act as a nucleation layer for wire growth and ZnO nanowire arrays can have direct contact with a variety of substrates. The structural and optical properties of ZnO nanowire arrays grown at 90°C are investigated. FESEM and X-ray diffraction observations reveal that the crystalline ZnO nanowire arrays are preferentially oriented along the c axis. The room temperature photoluminescence (PL) measurements had shown ultraviolet peaks and a deep level peak. After annealing at 900°C for 1 min. by RTA, the deep level peak became much weaker and the band-edge emission PL was much stronger.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.