Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T14:09:50.191Z Has data issue: false hasContentIssue false

Low Temperature Chemical Vapor Deposition of Titanium Nitride Thin Films With Hydrazine and Tetrakis-(dimethylamide)Titanium

Published online by Cambridge University Press:  10 February 2011

Carmela Amato-Wierda
Affiliation:
Materials Science Program, University of New Hampshire, Durham, NH 03824, ccawa@cisunix.unh.edu
Edward T. Norton Jr.
Affiliation:
Materials Science Program, University of New Hampshire, Durham, NH 03824, ccawa@cisunix.unh.edu
Derk A. Wierda
Affiliation:
Department of Chemistry, Saint Anselm College, Manchester, NH 03102
Get access

Abstract

Hydrazine and tetrakis-(dimethylamido)titanium have been used as precursors for the low temperature chemical vapor deposition of TiN thin films between 50°C and 200°C at growth rates between 5 to 35 nm/min. At hydrazine to TDMAT ratios of 50:1 and 100:1 the resulting films show an increase in the Ti:N ratio with increasing deposition temperature. They contain 2% carbon, and varying amounts of oxygen up to 36% as a result of diffusion after air exposure. The low temperature growth is improved when hydrazine-ammonia mixtures containing as little as 1.9% hydrazine are used. Their Ti:N ratio is almost 1:1 and they contain no carbon or oxygen according to RBS. The TiN films grown from pure hydrazine or the hydrazine-ammonia mixture have some crystallinity according to x-ray diffraction and their resistivity is on the order of 104µω cm. The low temperature growth is attributed to the weak N–N bond in hydrazine and its strong reducing ability. In these films, the Ti:N ratio is approximately 1:1.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Tu, K.N., Mayer, J.W., Poate, J.M., and Chen, L.J. (eds.) Advanced Metallization for Future ULSI (Materials Research Society Press, Pittsburgh, PA, 1996), Vol. 427.Google Scholar
2 Kattelus, H.P. and Nicolet, M. in Diffusion Phenomena in Thin Films and Microelectronic Materials, edited by Gupta, D. and Ho, P.S. (Noyes Publications, Park Ridge, NJ, 1988), p. 432.Google Scholar
3 Smith, P. M., Custer, J. S., Jones, R. V., Maverick, A. W., Roberts, D. A., Norman, J. A. T., Hochberg, A. K., Bai, G., Reid, J. S., Nicolet, M. A. Conference Proceedings ULSI XI (Materials Research Society, Pittsbrugh, PA, 1996), p. 249.Google Scholar
4 Reid, J. S. Amorphous ternary diffusion barriers for silicon metallizations. Ph.D. Thesis, California Institute of Technology, May, 1995.Google Scholar
5 Smith, P. M. and Custer, J. S. Appl. Phys. Lett. 70, 3116 (1997).Google Scholar
6 Baliga, J. Semiconductor International 3, 76 (1997).Google Scholar
7 Wang, S. MRS Bulletin 19, No. 8, 30 (1994).Google Scholar
8 Eizenberg, M. MRS Bulletin 20, No. 11, 38 (1995).Google Scholar
9 Sugiyama, K., , Pac, Sangryul, P., Takahashi, Y., and Motojima, S. J. Electrochem. Soc. 122, 1545 (1975).Google Scholar
10 Fix, R.M., Gordon, R.G., and Hoffman, D. M. Chem. Mater. 2, 235 (1990).Google Scholar
11 Fix, R.M., Gordon, R.G., and Hoffman, D. M. Chem. Mater. 3, 1138 (1991).Google Scholar
12 Musher, J.M. and Gordon, R.G. J. Mater. Res. 11, 989 (1996).Google Scholar
13 Musher, J.M. and Gordon, R.G. J. Electrochem. Soc. 143, 736 (1996).Google Scholar
14 Hoffmnan, D.M. Polyhedron, 13, 1169 (1994).Google Scholar
15 Dubois, L.H., Zegarski, B.R., and Girolami, G.S. J. Electrochem. Soc. 139, 3603 (1994).Google Scholar
16 Prybyla, J.A., Chiang, C.-M., and Dubois, L.H. J. Electrochem. Soc. 140, 2695 (1993).Google Scholar
17 Dubois, L.H. Polyhedron 13, 1329 (1994).Google Scholar
18 Intemann, A., Koerner, H., and Koch, F. J. Electrochem. Soc. 140, 3215 (1993).Google Scholar
19 Eizenberg, M., Littau, K., Ghanayem, S., Mak, A., Maeda, Y., Chang, M., and Sinha, A.K. Appl. Phys. Lett. 65, 2416 (1994).Google Scholar
20 Weber, A., Nikulski, R., Klages, C.P., Gross, M.E., Brown, W.L., Dons, E., and Charatan, R.M. J. Electrochem. Soc. 141, 849 (1994).Google Scholar
21 Raaijmakers, I. J. Thin Solid Films 247, 85 (1994).Google Scholar
22 Raaijmakers, I. J. and Yang, J. Applied Surface Science 73, 31 (1993).Google Scholar
23 Sun, S.C. and Tsai, M.H. Thin Solid Films 253, 440 (1994).Google Scholar
24 Katz, A., Feingold, A., Pearton, S.J., Nakahara, S., Ellington, M., Chakrabarti, U.K., Geva, M., and Lane, E. J. Appl. Phys. 70, 3666 (1991).Google Scholar
25 Katz, A., Feingold, A., Nakahara, S., Pearton, S.J., Lane, E., Geva, M., Stevie, F.A., and Jones, K. J. Appl. Phys. 15, 993 (1992).Google Scholar
26 Paranjpe, A. and IslamRaja, M. J. Vac. Sci. Technol. B. 13, 2105 (1995).Google Scholar
27 Faltermeir, C., Goldberg, C., Jones, M., Upham, A., Manger, D., Peterson, G., Lau, J., Kaloyeros, A.E., Arkles, B., and Paranjpe, A. J. Electrochem. Soc. 144, 1002 (1997).Google Scholar
28 Fujieda, S., Mizuta, M. and Matsumoto, Y. Advanced Materials for Optics and Electronics, 6, 127 (1996).Google Scholar
29 Schiessl, H.W. Aldrichimica Acta, 13, 33 (1980).Google Scholar
30 Truong, C.M., Chen, P.J., Corneille, J.S., Oh, W.S., and Goodman, D.W. J. Phys. Chem. 99, 8831 (1995).Google Scholar
31 Huheey, J.E. Inorganic Chemistry, 3rd ed. (Harper and Row, New York, 1983), p. A30–A31.Google Scholar