Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T09:49:16.062Z Has data issue: false hasContentIssue false

Long Cycle Life Nanocellulose Polypyrrole Electrodes

Published online by Cambridge University Press:  01 February 2011

Gustav Nyström
Affiliation:
Division of Nanotechnology and Functional Materials, The Ångström Laboratory, Uppsala University, Box 534, 751 21 Uppsala, Sweden
Henrik Olsson
Affiliation:
Division of Nanotechnology and Functional Materials, The Ångström Laboratory, Uppsala University, Box 534, 751 21 Uppsala, Sweden
Martin Sjödin
Affiliation:
Division of Nanotechnology and Functional Materials, The Ångström Laboratory, Uppsala University, Box 534, 751 21 Uppsala, Sweden
Daniel O. Carlsson
Affiliation:
Division of Nanotechnology and Functional Materials, The Ångström Laboratory, Uppsala University, Box 534, 751 21 Uppsala, Sweden
Albert Mihranyan
Affiliation:
Division of Nanotechnology and Functional Materials, The Ångström Laboratory, Uppsala University, Box 534, 751 21 Uppsala, Sweden
Leif Nyholm
Affiliation:
Department of Materials Chemistry, The Ångström Laboratory, Uppsala University, Box 538, 751 21 Uppsala, Sweden
Maria Strømme
Affiliation:
Division of Nanotechnology and Functional Materials, The Ångström Laboratory, Uppsala University, Box 534, 751 21 Uppsala, Sweden
Get access

Abstract

A polypyrrole (PPy) nanocellulose composite was shown to cycle well over 3000 cycles in 2.0 M NaCl electrolyte when used as the active material for both electrodes in an energy storage device. SEM micrographs show a highly porous nature of the conductive paper material and electrochemical charge-discharge measurements, as well as external electrode potential monitoring, confirm the good cycling behavior of the material.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Novák, P., Müller, K., Santhanam, K. S. V., Haas, O., Chem. Rev. 97, 207 (1997).Google Scholar
2. Naoi, K., Morita, M., Electrochem. Soc. Interface 17, 44 (2008).Google Scholar
3. Wang, Y. G., Li, H. Q., Xia, Y. Y., Adv. Mater. 18, 2619 (2006).Google Scholar
4. Gupta, V., Miura, N., Electrochim. Acta 52, 1721 (2006).Google Scholar
5. Chen, W.-C., Wen, T.-C., J. Power Sources 117, 273 (2003).Google Scholar
6. Peng, C., Jin, J., Chen, G. Z., Electrochim. Acta 53, 525 (2007).Google Scholar
7. Kim, B. C., Ko, J. M., Wallace, G. G., J. Power Sources 177, 665 (2008).Google Scholar
8. Mihranyan, A., Nyholm, L., Garcia Bennett, A. E., Strømme, M., J. Phys. Chem. B 112, 12249 (2008).Google Scholar
9. Gelin, K., Mihranyan, A., Razaq, A., Nyholm, L., Strømme, M., Electrochim. Acta 54, 3394 (2009).Google Scholar
10. Razaq, A., Mihranyan, A., Welch, K., Nyholm, L., Strømme, M., J. Phys. Chem B 113, 426 (2009).Google Scholar
11. Strømme, M., Frenning, G., Razaq, A., Gelin, K., Nyholm, L. and Mihranyan, A., J. Phys. Chem. B 113, 4582 (2009).Google Scholar
12. Nyström, G., Razaq, A., Strømme, M., Nyholm, L., Mihranyan, A., Nano Lett. 9, 3635 (2009).Google Scholar
13. Mihranyan, A., Llagostera, A. P., Karmhag, R., Strømme, M., Ek, R., Int. J. Pharm. 269, 433 (2004).Google Scholar
14. Lewis, T. W., Wallace, G. G., Kim, C. Y., Kim, D. Y., “Studies of the overoxidation of polypyrrole”, presented at International Conference on the Science and Technology of Synthetic Metals, Snowbird, Ut, Jul 28-Aug 02, 1996.Google Scholar