Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T03:45:53.248Z Has data issue: false hasContentIssue false

Localized Silicon Nanocrystals Fabricated by Stencil Masked Low Energy Ion Implantation: Effect of the Stencil Aperture Size on the Implanted Dose

Published online by Cambridge University Press:  31 January 2011

Regis Diaz
Affiliation:
diaz@insa-toulouse.fr, LPCNO, INSA, Toulouse, France
Carine Dumas
Affiliation:
dumas@insa-toulouse.fr, IM2NP, Toulon, France
Jeremie Grisolia
Affiliation:
grisolia@insa-toulouse.fr, LPCNO, INSA, Toulouse, France
Thierry Ondarçuhu
Affiliation:
Ondarçuhu@cemes.fr, CEMES/CNRS, GNS, Toulouse, France
Sylvie Schamm
Affiliation:
schamm@cemes.fr, CEMES/CNRS, nMat, Toulouse, France
Arnaud Arbouet
Affiliation:
arbouet@cemes.fr, CEMES/CNRS, nMat, Toulouse, France
Vincent Paillard
Affiliation:
paillard@cemes.fr, CEMES/CNRS, nMat, Toulouse, France
Gerard BenAssayag
Affiliation:
benassay@cemes.fr, CEMES/CNRS, nMat, Toulouse, France
Pascal Normand
Affiliation:
P.Normand@imel.demokritos.gr, NCSR, IMEL, Aghia Paraskevi, Greece
Juergen Brugger
Affiliation:
juergen.brugger@epfl.ch, EPFL, Laboratoire des Microsystèmes, Lausanne, Switzerland
Get access

Abstract

In this paper, we develop a new method based on ultra-low-energy ion implantation through a stencil mask to locally fabricate Si nanocrystals in an ultrathin silica layer. We perform a 1 keV Si implantation with doses of 5×1015 Si+/cm2, 7.5×1015 Si+/cm2 and 1×1016 Si+/cm2 in a 7 nm thick silicon oxide layer through stencil mask apertures ranging from 1μm up to 5 μm. After the mask removal the samples are furnace annealed at a temperature of 1050°C for 90 min under N2 atmosphere. The samples are then characterized by mapping the implanted and non-implanted areas by atomic force microscopy and photoluminescence spectroscopy. The intensity and the wavelength of the PL peak are found to depend on the implanted NCs cell size. A slight blue shift from 730 nm up to 720 nm is observed with decreasing cell size. Simultaneously, the PL intensity decreases and the signal vanishes for submicron features (which should contain 102 to 103 NCs). AFM microcopy performed on the implanted regions shows that the well-known oxide swelling usually observed after NCs synthesis decreases from 3.5 nm down to 0 as the cell size decreases. This result demonstrates that the effective implanted dose clearly decreases with the size of the cells. This effect is probably due to an electrostatic charging of the Si3N4 membrane despite the metallization treatments applied to the mask surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Dumas, C., Grisolia, J., BenAssayag, G., Paillard, V., Arbouet, A., Schamm, S., Normand, P. and Brugger, J., Phys. Stat. Sol. (a) 204, No.2, 487491 (2007).Google Scholar
[2] Tiwari, S., Rana, F., Hanafi, H. I., Hartstein, A., Crabbé, E. F., and Chan, K., Appl. Phys. Lett. 68, 1377 (1996).Google Scholar
[3] Hanafi, H. I., Tiwari, S., and Khan, I., IEEE Trans. Electron Devices ED43, 1553 (1996).Google Scholar
[4] Blauwe, J. De, IEEE Trans. Nanotechnol. 1, 72 (2002).Google Scholar
[5] Kapetanakis, E., Normand, P., Tsoukalas, D. and Beltsios, K., Appl. Phys. Lett. 80, 2794 (2002).Google Scholar
[6] Huang, S., Banerjee, S., Tung, R. T., and Oda, S., J. Appl. Phys. 93, 576 (2003).Google Scholar
[7] Molas, G., Salvo, B. De, Mariolle, D., Ghibaudo, G., Toffoli, A., Buffet, N. and Deleonibus, S., Surf. Sci. Spectra 47, 1645 (2003).Google Scholar
[8] Li, P. W., Liao, W. M., Kuo, David M. T., Lin, S. W., Chen, P. S., Lu, S. C. and Tsai, M.-J., Appl. Phys. Lett. 85, 1532 (2004).Google Scholar
[9] Normand, P, Kapetanakis, E, Dimitrakis, P, Skarlatos, D, Beltsios, K, Tsoukalas, D, et al. Nucl Instrum Methods Phys Res B 2004; 216 :228.Google Scholar
[10] Ammendola, G, Vulpio, M, Bileci, M, Nastasi, N, Gerardi, C, Renna, G, et al. J Vac Sci Technol B 2002; 20:2075 Google Scholar
[11] YC, King, TJ, King, Hu, C. IEEE Trans Electron Dev Meet 2001; ED-48:696.Google Scholar
[12] Carrada, M, Cherkashin, N, Bonafos, C, Ben Assayag, G, Chassaing, D, Normand, P, et al. Mater Sci Eng B 2003; 101 :204.Google Scholar
[13] Bonafos, C., Carrada, M., Cherkashin, N., Coffin, H., Chassaing, D., BenAssayag, G. and Claverie, A., Müller, T. and Heinig, K.H., Perego, M. and Fanciulli, M., Dimitrakis, P. and Normand, P., Journal of Applied Physics, vol.95, n°10, p.5696, 2004.Google Scholar