Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-28T23:45:12.840Z Has data issue: false hasContentIssue false

Local Vibrational Mode (LVM) Spectroscopy of Semiconductors

Published online by Cambridge University Press:  26 February 2011

Eugene E. Haller*
Affiliation:
Lawrence Berkeley Laboratory and University of California at Berkeley, Berkeley, CA 94720 USA
Get access

Abstract

Impurities and defects with masses smaller than the masses of the host semiconductor crystal atoms typically exhibit vibrational frequencies well above the phonon frequency spectrum. These vibrational modes produce sharp spectral absorption features in the infrared. Because of their strong spatial localization these modes are not affected by neighboring impurities and/or defects with concentrations up to 1019 cm−3. This insensitivity is especially advantageous when the free carrier concentration must be reduced through the introduction of electron irradiation defects or when highly doped thin layers must be investigated. LVM spectroscopy with perturbations such as polarization of the probe light, uniaxial and hydrostatic stress, and isotope substitution has been highly successful in identifying the structure and composition of a large number of defect complexes. Hydrogen, in particular, forming a wide variety of complexes in elemental and compound semiconductors has been extensively studied with LVM spectroscopy. For example, it has been shown recently that nitrogen acceptors are hydrogen passivated in MOCVD grown ZnSe. Carbon and oxygen have been investigated in all major semiconductors with LVM spectroscopy. The extreme simplification of the spectrum of bond centered oxygen through isotope enrichment of several Ge crystals has been demonstrated. Additional recent investigations of importance to the currently much studied semiconductors will be reviewed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.) Barker, A.S. Jr., and Sievers, A.J., Rev. Modern Physics 47, Suppl. 2 (1975)Google Scholar
2.) Spitzer, W.G., Festkorperprobleme XI, Advances in Solid State Physics, Madelung, O., ed. (Pergamon, Vieweg, Germany, 1971).Google Scholar
3.) Newman, R.C., Infrared Studies of Crystal Defects , (Taylor & Francis, London 1973); see also Festkorperprobleme XXV, Advances in Solid State Physics, P. Grosse, ed. (Vieweg, Braunschweig, 1985).Google Scholar
4.) Haller, E.E., J. Appl. Phys. 77,(7) 2857 (1995).Google Scholar
5.) see articles in Hydrogen in Semiconductors: Semic. & Semimetals 34, Pankove, J.I. and Johnson, N.M., eds., (Academic Press, Orlando, FL, 1991).Google Scholar
6.) Haller, E.E., in Handbook on Semiconductors Vol 3b, Mahajan, S., ed., (Elsevier Science BV, Amsterdam 1994); pp. 15151555.Google Scholar
7.) Haller, E. E., “Hydrogen-Related Phenomena in Crystalline Germanium,” Chapter 11 in : Hydrogen in Semiconductors: Semiconductors and Semimetals Vol. 34, Pankove, J.I. and Johnson, N.M., eds., (Academic Press, Orlando, FL, 1991); pp 351380.Google Scholar
8.) Kahn, J. M., McMurray, R. E. Jr., Haller, E. E. and Falicov, L. M., Phys. Rev. B 36, No. 15, 8001 (1987).Google Scholar
9.) Joos, B., Haller, E. E. and Falicov, L. M., Phys. Rev. B 22, 832 (1980).Google Scholar
10.) Sah, T., Sun, J.Y.G., Tzou, J.J., Appl. Phys. Lett. 43,204 (1983).Google Scholar
11.) Pankove, J.I., Carlson, D.E., Berkeyheiser, J.E. and Wance, R.O., Phys. Rev. Lett. 51, 2224 (1983).Google Scholar
12.) Johnson, N.M., Herring, C. and Chadi, D.J., Phys. Rev. Lett. 56,769 (1986).Google Scholar
13.) Stavola, M., Pearton, S.J., Lopata, J., and Dautremont-Smith, W.C., Appl. Phys. Lett. 50, 1086 (1987).Google Scholar
14.) Stavola, M., provate communication.Google Scholar
15.) Bergman, K., Stavola, M., Pearton, S.J., and Lopata, J., Phys. Rev. B 37, 2770 (1988).Google Scholar
16.) Haller, E.E., Semic. Sci. Technol. 6, 73 (1991).Google Scholar
17.) see articles in Hydrogen in Compound Semiconductors, Pearton, S.J., ed., Materials Science Forum 148/9, (Trans. Tech. Publ. 1994).Google Scholar
18.) Bergman, K., Stavola, M., Pearton, S.J., and Hayes, T., Phys. Rev. B 38, 9643 (1988).Google Scholar
19.) Stavola, M., Bergman, K., Pearton, S.J., and Lopata, J., Phys. Rev. Lett. 61, 2786 (1988) .Google Scholar
20.) Denteneer, P.J.H., Van de Walle, C.G. and Pantelides, ST., Phys. Rev. B 39, 10809 (1989) and Phys. Rev. Lett. 62, 1884 (1989).Google Scholar
21.) Stoneham, A.M., Phys. Rev. Lett. 63,1027 (1989).Google Scholar
22.) Watkins, G., Proc. 15th Intl. Conf. Defects in Semiconductors, Frerenczi, G., ed. (Trans. Tech. Publ., Switzerland, 1989), p. 39.Google Scholar
23.) Cheng, Y.M. and Stavola, M., Phys. Rev. Lett. 73, 3419 (1994).Google Scholar
24.) Darwich, R., Pajot, B., Rose, B., Robein, D., Theys, B., Rahbi, R., Porte, C., and Gendron, F., Phys. Rev. B 48,17776 (1993).Google Scholar
25.) Clerjaud, B., Gendron, F., Krause, M. and Ulrici, W., Phys. Rev. Lett. 65, 1800 (1990).Google Scholar
26.) Davidson, B.R., Newman, R.C., Bullough, T.J., and Joyce, T.B., Semic. Sci. and Technol. 8, 1783 (1993).Google Scholar
27.) Jones, R. and Oberg, S., Phys. Rev. B 44, 3673 (1991).Google Scholar
28.) Chevallier, J., Pajot, B., Jalil, A., Moustefaoui, R., Rahbi, R., and Boissy, M.C., Mat. Res. Soc. Proc. Vol. 104, 337 (1988).Google Scholar
29.) Ashwin, M.J., Davidson, B.R., Woodhouse, K., Newman, R.C., Bullough, T.J., Joyce, T.B., Nicklin, R., and Bradley, R.R., Semic. Sci. Technol. 8, 625 (1993).Google Scholar
30.) Pritchard, R.E., Davidson, B.R., Newman, R.C., Bullough, T.J., Joyce, T.B., and Oberg, S., Semic. Sci. Technol. 9, 140 (1994)Google Scholar
31.) Clerjaud, B., Cote, D., Hahn, W.-S., and Ulrici, W., Appl. Phys. Lett. 58, 1860 (1991) .Google Scholar
32.) Stavola, M., Pearton, S.J., Lopeta, J., Abernathy, C.R., and Bergman, K., Phys. Rev. B39, 8051 (1989).Google Scholar
33.) McCluskey, M.D., Haller, E.E., Walker, J. and Johnson, N. M., Appl. Phys. Lett. 65, 2191 (1994).Google Scholar
34.) Vetterhofer, J., Svensson, J.H., Weber, J., Leitch, A.W.R. and Botha, J.R., Phys. Rev. B 50, 2708 (1994).Google Scholar
35.) Rahbi, R., Theys, B., Jones, R., Pajot, B., Oberg, S., Somogyi, K., and Fille, M.L., Solid State Commun. 91, 187 (1994).Google Scholar
36.) Brandt, M.S., Ager, J.W. III, Gotz, W., Johnson, N.M., Harris, J.S. Jr., Molnar, R.J., and Moustakas, T.D., Phys. Rev. B 49, 14758 (1994).Google Scholar
37.) Wolk, J., Ager, J.W. III, Duxstad, K.J., Haller, E.E., Taskar, N.R., Dorman, D.R. and Olego, D.J., Appl. Phys. Lett. 63, 2756(1993).Google Scholar
38.) Kamata, A., Mitsuhashi, H. and Fujita, H., Appl. Phys. Lett. 63, 3353 (1993).Google Scholar
39.) Leigh, R.S., Newman, R.C., Sangster, M.J.L., Davidson, B.R., Ashwin, M.J. and Robbie, D. A., Semic. Sci. Technol 9, 1054 (1994).Google Scholar
40.) Leigh, R.S. and Newman, R.C., J. Phys. C: Solid Sate Phys 15, L1045 (1982).Google Scholar
41.) Sangster, M.J.L., Newman, R.C., Gledhill, G., and Upadhyay, S.B., Semicond. Sci and Technol. 7,1295 (1992).Google Scholar
42.) Newman, R.C., Semicond. Sci. and Technol. 9,1749 (1994).Google Scholar
43.) Wolk, J.A., Kruger, M.B., Heyman, J.N., Walukiewicz, W., Jeanloz, R., and Haller, E.E., Phys. Rev. Lett. 66,774 (1991).Google Scholar
44.) Chadi, D.J. and Chang, K.J., Phys. Rev. B 39,10063 (1989).Google Scholar
45.) Luke, P.N., Appl. Phys. Lett. 65, 2884 (1994), see also papers in Nucl. Instr. & Meth. A 352, No. 1-3 (1994).Google Scholar
46.) see papers in Proc. Producibility of II-VI Materials and Devices , SPIE Proc. Vol. 2228 (1994).Google Scholar
47.) See papers in Proc. 6th Intl. Conf. on II-VI Compounds and Related Opto- electronic Materials, J. Crystal Growth 138, No. 1–4 (1994).Google Scholar
48.) Dean Sciacea, M., Mayur, A.J., Shin, N., Miotkowski, I., Ramdas, A.K., and Rodriguez, S., Phys. Rev. B 51, March 15 (1995), in press.Google Scholar
49.) Kittel, C., Introduction to Solid State Physics, 6th edition (John Wiley & Sons, Inc., New York, 1986), p. 582–3 (from C.H. Johansson and J.C. Linde, Ann. Phys. 25, 1 (1936)).Google Scholar
50.) Kaiser, W., Keck, P.H. and Lange, C.F., Phys. Rev. B 101, 1264 (1956).Google Scholar
51.) Bosomworth, D.R., Hayes, W., Spray, A.R.L., and Watkins, G.D., Proc. Roy. Soc. London A317, 133 (1970).Google Scholar
52.) Mayur, A.J., Dean Sciacea, M., Udo, M.K., Ramdas, A.K., Itoh, K., Wolk, J., and Haller, E. E., Phys. Rev. B 49,16293 (1994).Google Scholar