Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T09:01:16.926Z Has data issue: false hasContentIssue false

Liquid Crystalline Zinc Chloride

Published online by Cambridge University Press:  10 February 2011

J. D. Martin
Affiliation:
Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, jdmartin@ncsu.edu
T.A. Thornton
Affiliation:
Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, jdmartin@ncsu.edu
Get access

Abstract

The templated syntheses of our zeolite-type frameworks of metal halides frequently result in the formation of glassy phases or viscous liquids that might be described as ambient temperature molten salts. Having discovered that certain of these materials exhibit remarkable birefringence, we have investigated the structure of both the glass and liquid forms of alkylammonium templated zinc chloride materials by neutron and X-ray diffraction, as well as DSC and polarizing microscopy techniques. Further template control using alkylammonium surfactants as directors has yielded an entire family of liquid crystalline materials with up to 90% inorganic content. The compositional dependence of the structure of these liquid crystalline phases suggests that these materials are best described as “solvent-free” lyotropic liquid crystals.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Metallomesogens: Synthesis, Properties and Applications, Ed. Serrano, J. L., VCH: New York 1995.Google Scholar
2 a) Zocher, H., Z Anorg. AlIg. Chem., 147, 91 (1925). b) P. Davidson, C. Bourgaux, L. Schoutteten, P. Sergot, C. Williams, and J. Livage, J. Phys. II France, 5, 1577 (1995).Google Scholar
3 Martin, J. D., Dattelbaum, A. M., Sullivan, R. M., Thornton, T. A., Wang, J., and Peachey, M. T.. Chem. Mater., 10, 2699(1998).Google Scholar
4 Maitin, J. D. and Greenwood, K. B.. Angew. Chem. Int. Ed. Engl., 36, 2072 (1997).Google Scholar
5 Biggins, S. and Enderby, J. E., J. Phys C: Solid State Phys., 14, 3129 (1981).Google Scholar
6 a) Zuñiga, F. J. and Chapuis, G., Mol. Cryst. Liq. Cryst. (1985), 128, 349366. b) F. J. Zuniga and G. Chapuis, Cryst. Struct. Comm., 10, 533 (1981).Google Scholar
7 Bowlas, C. J., Bruce, D. W. and Seddon, K. R., J Chem. Soc. Chem. Commun, 1625 (1996).Google Scholar
8 Neve, F., Crispini, A., and Armentano, S., Chem. Mater., 10, 1904 (1998).Google Scholar
9 Neve, F., Adv. Mater., 8, 277 (1996).Google Scholar
10 a) Ekwall, P., Advances in Liquid Crystals, Brown, G.H. (Ed.) Acad. Press, 1, 1 (1975). b) J. H. Clint, SurfactantAggregation, Chapman and Hall: New York, 1992. c) F. K. Broome, C. W. Hoerr and H. J. Harwood, J. Am. Chem. Soc., 73, 3350 (1951).Google Scholar
11 Monnier, A., Schiith, F., Huo, Q., Kumar, D., Margolese, D., Maxwell, R. S., Stucky, G. D., Krishnanmurty, M., Petroff, P., Firouzi, A., Janicke, M., and Chmelka, B. F., Science, 261, 1299 (1993).Google Scholar