Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-28T23:32:25.408Z Has data issue: false hasContentIssue false

Light Guiding in Low Index Materials using High-Index-Contrast Waveguides

Published online by Cambridge University Press:  01 February 2011

Vilson R. Almeida
Affiliation:
Cornell University, School of Electrical and Computer Engineering, 429 Phillips Hall Ithaca, NY 14853, U.S.A.
Qianfan Xu
Affiliation:
Cornell University, School of Electrical and Computer Engineering, 429 Phillips Hall Ithaca, NY 14853, U.S.A.
Roberto R. Panepucci
Affiliation:
Cornell University, School of Electrical and Computer Engineering, 429 Phillips Hall Ithaca, NY 14853, U.S.A.
Carlos A. Barrios
Affiliation:
Cornell University, School of Electrical and Computer Engineering, 429 Phillips Hall Ithaca, NY 14853, U.S.A.
Michal Lipson
Affiliation:
Cornell University, School of Electrical and Computer Engineering, 429 Phillips Hall Ithaca, NY 14853, U.S.A.
Get access

Abstract

We propose a novel high-index-contrast waveguide structure capable of light strong confinement and guiding in low-refractive-index materials. The principle of operation of this structure relies on the electric field (E-field) discontinuity at the interface between high-index-contrast materials. We show that by using such a structure the E-field can be strongly confined in a 50-nm-wide low-index region with normalized average intensity of 20 μm−2. This intensity is approximately 20 times higher than that can be achieved in SiO2 with conventional rectangular or photonic crystal waveguides.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lee, ı. K. K., Lim, D. R., Kimerling, L. C., Shin, J., and Cerrina, F., “Fabrication of ultralow-loss Si SiO 2 waveguides by roughness reduction,” Opt. Lett. 26, 1888 (2001).Google Scholar
2. Sakai, A., Hara, G., and Baba, T., “Sharply bent optical waveguide on silicon-on-insulator substrate,” Proceedings of SPIE 4283, 610 (2001).Google Scholar
3. Manolatou, C., Johnson, S. G., Fan, S., Villeneuve, P. R., Haus, H. A., and Joannopoulos, J. D., “High-density integrated optics,” J. Lightwave Tchonol. 17, 1682 (1999).Google Scholar
4. Little, B. E., Foresi, J. S., Steinmeyer, G., Thoen, E. R., Chu, S. T., Haus, H. A., Ippen, E. P., Kimerling, L. C., and Greene, W., “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549 (1998).Google Scholar
5. Duguay, M. A., Kokubun, Y., and Koch, T. L., “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phy. Lett. 49, 13 (1986).Google Scholar
6. Bernini, R., Campopiano, S., Zeni, L., and de Boer, C., and Sarro, P. M., “Planar antiresonant reflecting optical waveguides as sensors for liquid substances,” Sensors, Proceedings of IEEE 2, 1160 (2002).Google Scholar
7. Cregan, R. F., Mangan, B. J., Knight, J. C., Birks, T. A., Russel, P. St. J., Roberts, P. J., and Allan, D. C., “Single-mode photonic band gap guidance of light in air,” Science 285, 1537(1999).Google Scholar
8. Johnson, S. G., Ibanescu, M., Skorobogatiy, M., Weisberg, O., Engeness, T. D., Soljacic, M., Jacobs, S. A., Joannopoulos, J. D., and Fink, Y., “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Optics Express 9, 748 (2001).Google Scholar
9. Xu, C. L., Huang, W. P., Stern, M. S., and Chaudhuri, S. K., “Full-vectorial mode calculations by finite difference method,” IEE Proc.-Optoelectron. 141, 281 (1994).Google Scholar
10. Almeida, V. R., Panepucci, R. R., and Lipson, M., “Nanotaper for compact mode conversion,” Opt. Lett. 28, 1302 (2003).Google Scholar