Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T13:42:49.672Z Has data issue: false hasContentIssue false

Layered Compound Semiconductor GaSe and GaTe Crystals for THz Applications

Published online by Cambridge University Press:  26 February 2011

Krishna C. Mandal
Affiliation:
kmandal@eiclabs.com, EIC Laboratories, Inc., Advanced Materials Division, 111 Downey Street, Norwood, MA, 02062, United States, 781-769-9450, 781-551-0283
Sung H. Kang
Affiliation:
skang@eiclabs.com, EIC Laboratories, Inc., Advanced Materials Division, 111 Downey Street, Norwood, MA, 02062, United States
Michael K. Choi
Affiliation:
mchoi@eiclabs.com, EIC Laboratories, Inc., Advanced Materials Division, 111 Downey Street, Norwood, MA, 02062, United States
Get access

Abstract

The single crystal growth of layered semiconductors GaSe and GaTe by vertical Bridgman technique using zone refined selenium (Se), tellurium (Te) and high purity (HP) gallium (Ga) have been described. The grown crystals (2.5 cm diameter and ∼10 cm long) have demonstrated efficient broadband tunable THz emission and as sensitive THz detectors. The crystals have shown promising characteristics with good optical quality, high dark resistivity, wide band gap (GaSe-2.01 eV and GaTe-1.66 eV at 300 K), good anisotropic (parallel, p & perpendicular, pa) electrical properties (σ∥ vs σ and μ∥ vs σ) and long term stability. Different steps involved in processing GaSe and GaTe crystals as THz sources and sensors are described.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Dmitriev, V. G., Gurzadyhan, G. G., and Nikogosyan, D. N., “Handbook of Nonlinear Optical Crystals” (Springer, 1999) pp. 166169.Google Scholar
2. Yu, B. L., Zeng, F., Kartazayev, V., Alfano, R.R., and Mandal, Krishna C., Appl. Phys. Lett. 87, 182104 (2005).Google Scholar
3. Mandal, Krishna C., Noblitt, C., Choi, M., Smirnov, A., and Rauh, R. David, AIP Proc., CP 772, 159 (2005).Google Scholar
4. Liu, K., Xu, J., and Zhang, X.-C., Appl. Phys. Lett. 85, 863 (2004).Google Scholar
5. Shi, W., Ding, Y. J., Fernelius, N., and Vodopyanov, K., Opt. Lett. 27, 1454 (2002).Google Scholar
6. Fernelius, N. C., Prog. Crystal Growth and Charact. 28, 275 (1994).Google Scholar
7. Mandal, Krishna C., Kang, S.H., Choi, M., Bello, J., Zheng, L., Zhang, H., Groza, M., Roy, U.N., Burger, A., Jellison, G.E., Holcomb, D.E., Wright, G.W., and Williams, J.A., J. Electron. Mater. 35, 1251 (2006).Google Scholar
8. Ma, R., Zhang, H., Larson, D.J., and Mandal, Krishna C., J. Crystal. Growth 266, 216 (2004).Google Scholar
9. Voevodin, V. G., Voevodina, O. V., Bereznaya, S. A., Korotchenko, Z. V., Morozov, A. N., Sarkisov, S. Y., Fernelius, N. C., Goldstein, J. T., Optical Materials 26, 495 (2004).Google Scholar
10. Minder, R., Ottaviani, G., and Canali, C., J. Phys. Chem. Solids 37, 417 (1976).Google Scholar
11. Huber, R., Brodschelm, A., Tauser, F., and Leitenstorfer, A., Appl. Phys. Lett. 76, 3191 (2000).Google Scholar
12. Reitmann, K., Smith, R. P., Weiner, A. M., Elsaesser, T., and Woerner, M., Opt. Lett. 28, 471 (2003).Google Scholar