Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-28T23:54:40.730Z Has data issue: false hasContentIssue false

Laser-Induced Chemical Etching of Solids: Promises and Challenges

Published online by Cambridge University Press:  21 February 2011

T. J. Chuang*
Affiliation:
IBM Research Laboratory, 5600 Cottle Road, San Jose, California 95193
Get access

Abstract

Recent studies have shown the potential of laser-induced chemical etching to become a powerful technique for processing electronic materials. In this paper, the unique strengths and limitations of the laser chemical approach are examined. Some photon-enhanced reaction mechanisms, in particular silicon-halogen reactions, are discussed to illustrate the many facets of the electronically, vibrationally and thermally activated surface processes. It is suggested that the field-assisted diffusion mechanism proposed by Winters, Coburn and Chuang may also be applicable to some photon-induced etching reactions. In addition, the salient features of the laser and the plasma-assisted etching methods are compared. The challenges to resolve certain fundamental and practical difficulties involved in developing the laser technique for processing technology are also outlined.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See the review by Chuang, T. J., Surf. Sci. Reports 3, 1 (1983).Google Scholar
2. Chuang, T. J., J. Vac. Sci. Technol. 21, 798 (1982) and references therein.Google Scholar
3. Chuang, T. J., Mat. Res. Soc. Symp. Proc. 17, 45 (1983), and references therein.Google Scholar
4. Srinivason, R., Polymer 23, 1863 (1982);CrossRefGoogle Scholar
4a Srinivason, R. and Leigh, W. J., J. Am. Chem. Soc. 104, 6784 (1982).CrossRefGoogle Scholar
5. Chuang, T. J., J. Chem. Phys. 74, 1453 (1981);Google Scholar
5a 72, 6303 (1980).Google Scholar
6. Hould, F. A. and Chuang, T. J. (unpublished);Google Scholar
6a Chen, L., Chuang, T. J., Lankard, J. and Brannon, J. H. (unpublished).Google Scholar
7. Ehrlich, D. J., Osgood, R. M. Jr. and Deutsch, T. F., Appl. Phys. Lett. 38, 1018 (1981).Google Scholar
8. Okano, H., Yamazaki, T., Sekine, M. and Horiike, Y., in Proceedings of 4th Symposium on Dry Processes (Tokyo, Japan, 1982, p. 6;Google Scholar
8a Sekine, M., Okano, H. and Horiike, Y., in Proceedings of 5th Symposium on Dry Processes (Tokyo, Japan, 1983, p. 97.Google Scholar
9. Chuang, T. J., J. Chem. Phys. 74, 1461 (1981).Google Scholar
10. Houle, F. A., Chem. Phys. Lett. 95, 5 (1983).Google Scholar
11. Houle, F. A., J. Chem. Phys. 79, 4237 (1983).CrossRefGoogle Scholar
12. Chuang, T. J., J. Electr. Spectr. Relat. Phenom. 29, 125 (1983).Google Scholar
13. Chuang, T. J., J. Appl. Phys. 51, 2614 (1980).Google Scholar
14. Winters, H. F. and Coburn, J. W., Appl. Phys. Lett. 34, 70 (1979).Google Scholar
15. Tu, Y. Y., Chuang, T. J. and Winters, H. F., Phys. Rev. B23, 823 (1981).Google Scholar
16. Winters, H. F. and Houle, F. A., J. Appl. Phys. 54, 1218 (1983).Google Scholar
17. Seel, M. and Bagus, P. S., Phys. Rev. B (in press).Google Scholar
18. McFeely, F. R., Morar, J., Landgren, G. and Himpsel, F. J., presented at MRS Symposium on Thin Films and Interfaces (November 14–18, 1983, Boston, Massachusetts), to be published.Google Scholar
19. Winters, H. F., Coburn, J. W. and Chuang, T. J., J. Vac. Sci. Technol. B1, 469 (1983).Google Scholar
20. Cabrera, N. and Mott, N. F., Rep. Prog. Phys. 12, 163 (1949);Google Scholar
20a Fehner, F. P. and Mott, N. F., J. Oxidation of Metals 2, 59 (1970).Google Scholar
21. Gauthier, R. and Guittard, C., Phys. Stat. Solidi. A38, 477 (1976).Google Scholar
22. Brown, W. L., in Laser and Electron Beam Processing of Materials, ed. by White, C. W. and Pearcy, P. S. (Academic, New York, 1980), p. 20.Google Scholar
23. Schafer, S. A. and Lyon, S. A., J. Vac. Sci. Technol. 19, 494 (1981);Google Scholar
23a 21, 422 (1982).Google Scholar
24. Young, E. M. and Tiller, W. A., Appl. Phys. Lett. 42, 63 (1983).CrossRefGoogle Scholar
25. Petro, W. G., Hino, I., Eglash, S., Lindau, I., Su, C. Y. and Spicer, W. E., J. Vac. Sci. Technol. 21, 405 (1982).Google Scholar
26. Chuang, T. J., IBMJ. Res. Develop. 26, 145 (1982).Google Scholar
27. Steinfeld, J. I., Anderson, T. G., Reiser, C., Denison, D. R., Hartsough, L. D. and Hollahan, J. R., J. Electrochem. Soc. 127, 514 (1980).CrossRefGoogle Scholar
28. Kawamura, Y., Toyoda, K. and Namba, S., Appl. Phys. Lett. 40, 374 (1982).CrossRefGoogle Scholar
29. Ehrlich, D. J. and Tsao, J. Y., Mat. Res. Soc. Symp. Proc. 17, 3 (1983).Google Scholar
30. Lax, M., J. Appl. Phys. 48, 3919 (1977);Google Scholar
30a Mazumder, J. and Steen, W. M., J. Appl. Phys. 51, 941 (1980).Google Scholar
31. Chen, M. and Marrello, V., J. Vac. Sci. Technol. 18, 75 (1981).Google Scholar
32. Coburn, J. W. and Winters, H. F., J. Vac. Sci. Technol. 16, 391 (1979), and references therein.Google Scholar
33. Horiike, Y., Sugawara, T., Okano, H., Shibagaki, M. and Ueda, Y., Jpn. J. Appl. Phys. 20, 803 (1981).CrossRefGoogle Scholar