Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T15:06:30.690Z Has data issue: false hasContentIssue false

Laser-assisted surface engineering of thin film electrode materials for lithium-ion batteries

Published online by Cambridge University Press:  22 August 2011

Wilhelm Pfleging
Affiliation:
Institute for Applied Materials, Karlsruhe Institute of Technology, Karlsruhe, Germany
Robert Kohler
Affiliation:
Institute for Applied Materials, Karlsruhe Institute of Technology, Karlsruhe, Germany
Steffen Scholz
Affiliation:
Manufacturing Engineering Centre, School of Engineering, Cardiff University, CF24 3AA, UK
Carlos Ziebert
Affiliation:
Institute for Applied Materials, Karlsruhe Institute of Technology, Karlsruhe, Germany
Johannes Proell
Affiliation:
Institute for Applied Materials, Karlsruhe Institute of Technology, Karlsruhe, Germany
Get access

Abstract

Electrode thin films made of LiCoO2, Li-Mn-O and SnO2 were synthesized by rf magnetron sputtering on silicon and stainless steel substrates. In order to increase the active surface direct laser structuring methods using ns- and ps-laser sources were applied. A laser system operating at a wavelength of 248 nm with a pulse length of 4-6 ns and repetition rates up to 500 Hz enabled the formation of high aspect ratio micro- and sub-micron structures with feature sizes down to less than 400 nm. Subsequent to the laser structuring process, laser annealing of LiCoO2 and Li-Mn-O was performed in order to achieve an appropriate crystalline phase which shows improved electrochemical cycling performance. Laser annealing was applied via a high power diode laser system operating at a wavelength of 940 nm. In case of LiCoO2 the high temperature phase was obtained through laser-annealing while for Li-Mn-O the spinel phase was formed. For both LiCoO2 and Li-Mn-O thin films appropriate annealing parameters were temperatures of up to 680 °C and an annealing time of 100 s.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. West, W.C., Whitacre, J.F., White, V., and Ratnakumar, B.V., Journal of Micromechanics and Microengineering, 12, 58 (2002).Google Scholar
2. Baggetto, L., Niessen, R.A.H., Roozeboom, F., and Notten, P.H.L., Advanced Functional Materials, 18, 1057 (2008).Google Scholar
3. Song, J., Yang, X., Zeng, S.S., Cai, M.Z., Zhang, L.T., Dong, Q.F., Zheng, M.S., Wu, S.T., and Wu, Q.H., Journal of Micromechanics and Microengineering, 19, (2009).Google Scholar
4. Scrosati, B. and Garche, J., Journal of Power Sources, 195, 2419 (2010).Google Scholar
5. Liu, C., Li, F., Ma, L.P., and Cheng, H.M., Advanced Materials, 22, E28 (2010).Google Scholar
6. Hart, R.W., White, H.S., Dunn, B., and Rolison, D.R., Electrochemistry Communications, 5, 120 (2003).Google Scholar
7. Kobayashi, H., Uebou, Y., Ishida, T., Tamura, S., Mochizuki, S., Mihara, T., Tabuchi, M., Kageyama, H., and Yamamoto, Y., Journal of Power Sources, 97–8, 229 (2001).Google Scholar
8. Liu, P.Y., Chen, J.F., and Sun, W.D., Vacuum, 76, 7 (2004).Google Scholar
9. Kwoka, M., Ottaviano, L., Waczynska, N., Santucci, S., and Szuber, J., Applied Surface Science, 256, 5771 (2010).Google Scholar
10. Kuwata, N., Kumar, R., Toribami, K., Suzuki, T., Hattori, T., and Kawamura, J., Solid State Ionics, 177, 2827 (2006).Google Scholar
11. Xia, H., Tang, S.B., and Lu, L., Journal of the Korean Physical Society, 51, 1055 (2007).Google Scholar
12. Chiu, K.F., Chen, C.C., Lin, K.M., Lin, H.C., Lo, C.C., Ho, W.H., and Jiang, C.S., Vacuum, 84, 1296 (2010).Google Scholar
13. Song, J., Cai, M.Z., Dong, Q.F., Zheng, M.S., Wu, Q.H., and Wu, S.T., Electrochimica Acta, 54, 2748 (2009).Google Scholar
14. Ketterer, B., Vasilchina, H., Seemann, K., Ulrich, S., Besser, H., Pfleging, W., Kaiser, T., and Adelhelm, C., International Journal of Materials Research, 99, 1171 (2008).Google Scholar
15. Ziebert, C., Ketterer, B., Rinke, M., Adelhelm, C., Ulrich, S., Zum Gahr, K.H., Indris, S., and Schimmel, T., Surface & Coatings Technology, 205, 1589 (2010).Google Scholar
16. Golodnitsky, D., Yufit, V., Nathan, M., Shechtman, I., Ripenbein, T., Strauss, E., Menkin, S., and Peled, E., Journal of Power Sources, 153, 281 (2006).Google Scholar
17. Baggetto, L., Oudenhoven, J.F.M., van Dongen, T., Klootwijk, J.H., Mulder, M., Niessen, R.A.H., de Croon, M.H.J.M., and Notten, P.H.L., Journal of Power Sources, 189, 402 (2009).Google Scholar
18. Jeyaseelan, A.V. and Rohan, J.F., Applied Surface Science, 256, S61 (2009).Google Scholar
19. Kohler, R., Smyrek, P., Ulrich, S., Bruns, M., Trouillet, V., and Pfleging, W., Journal of Optoelectronics and Advanced Materials, 12, 547 (2010).Google Scholar
20. Kohler, R., Proell, J., Ulrich, S., Trouillet, V., Indris, S., Przybylski, M., and Pfleging, W., Laser-Based Micro- and Nanopackaging and Assembly III, 7202, 720207 (2009).Google Scholar
21. Kohler, R., Bruns, M., Smyrek, P., Ulrich, S., Przybylski, M., and Pfleging, W., Laser-Based Micro- and Nanopackaging and Assembly IV, 7585, 75850O (2010).Google Scholar
22. Zhang, W.J., Journal of Power Sources, 196, 13 (2011).Google Scholar
23. Pfleging, W., Przybylski, M., and Bruckner, H.J., Laser-based Micropackaging, 6107, G1070 (2006).Google Scholar
24. Karnakis, D., Rutterford, G., Knowles, M., Dobrev, T., Petkov, P., and Dimov, S., Photon Processing in Microelectronic and Photonics V, 6106, 60604 (2006).Google Scholar
25. Kratzsch, A., Ulrich, S., Leiste, H., Stuber, M., and Holleck, H., Surface & Coatings Technology, 119, 949 (1999).Google Scholar
26. Proell, J., Kohler, R., Adelhelm, C., Bruns, M., Torge, M., Heißler, S., Przybylski, M., Ziebert, C., and Pfleging, W., Laser-based Micro- and Nanopackaging and Assembly V, 7921, in press (2011).Google Scholar
27. Kohler, R., Besser, H., Hagen, M., Ye, J., Ziebert, C., Ulrich, S., Proell, J., and Pfleging, W., Microsystem Technologies, 17, 225 (2011).Google Scholar
28. Julien, C.M. and Massot, M., Materials Science and Engineering B-Solid State Materials for Advanced Technology, 100, 69 (2003).Google Scholar
29. Julien, C.M. and Massot, M., Materials Science and Engineering B-Solid State Materials for Advanced Technology, 97, 217 (2003).Google Scholar
30. Edstrom, K., Gustafsson, T., and Thomas, J.O., Electrochimica Acta, 50, 397 (2004).Google Scholar