Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T01:25:38.554Z Has data issue: false hasContentIssue false

Laser Induced Heating of Group IV Nanowires

Published online by Cambridge University Press:  21 February 2012

J. Anaya
Affiliation:
GdS Optronlab, Ed I+D, Universidad de Valladolid, P. de Belén, 1, 47011 Valladolid, Spain
A. Torres
Affiliation:
GdS Optronlab, Ed I+D, Universidad de Valladolid, P. de Belén, 1, 47011 Valladolid, Spain
A. Martin-Martín
Affiliation:
GdS Optronlab, Ed I+D, Universidad de Valladolid, P. de Belén, 1, 47011 Valladolid, Spain
J. Jiménez
Affiliation:
GdS Optronlab, Ed I+D, Universidad de Valladolid, P. de Belén, 1, 47011 Valladolid, Spain
A. Rodríguez
Affiliation:
Tecnología Electrónica, ETSIT, Universidad Politécnica de Madrid, 28040 Madrid, Spain.
T. Rodríguez
Affiliation:
Tecnología Electrónica, ETSIT, Universidad Politécnica de Madrid, 28040 Madrid, Spain.
Get access

Abstract

Semiconductor nanowires (NWs) are fundamental structures for nanoscale devices. The excitation of NWs with laser beams results in thermal effects that can substantially change the spectral shape of the spectroscopic data. In particular, the interpretation of the Raman spectrum is greatly influenced by excitation induced temperature. A study of the interaction of the NWs with the excitation laser beam is essential to interpret the spectra. We present herein a finite element analysis of the interaction between the laser beam and the NWs. The resultas are applied to the interpretation of the Raman spectrum of bundles of NWs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cui, Y., Lieber, C.M. ; Science 291, 851 (2001).Google Scholar
2. Bhattacharya, S., Samui, S. ; Appl. Phys. Lett. 84, 1564(2004)Google Scholar
3. Gupta, S.R., Xiong, Q., Adu, C.K., Kim, U.J., Eklund, P.C.; Nano Lett. 3, 627 (2003).Google Scholar
4. Li, D., Wu, Y., Kim, P., Shi, L., Yang, P., Majumdar, A.; Appl. Phys. Lett. 83, 2934 (2003).Google Scholar
5. Kazan, M., Guisbiers, G., Pereira, S., Correia, M.R., Masri, P., Bruyant, A., Volz, S., Royer, P.; J. Appl. Phys. 107, 083503 (2010)Google Scholar
6. Scheel, H., Reich, S., Ferrari, A.C., Cantoro, M., Colli, A., Thomsen, C.; Appl. Phys. Lett. 88, 233114 (2006)Google Scholar
7. Torres, A., Martín-Martín, A., Martínez, O., Prieto, A.C., Hortelano, V, Jiménez, J., Rodríguez, A., Sangrador, J., Rodríguez, T.; Appl. Phys. Lett 96, 011904 (2010)Google Scholar
8. Liu, X.F., Wang, R., Jiang, Y.P., Zhang, Q., Shan, X.Y., Qiu, X.H.; J. Appl. Phys. 108, 054310 (2010)Google Scholar
9. Soini, M., Zardo, I., Uccelli, E., Funk, S., Koblmuller, G., Fontcuberta i Morral, A., Abstreiter, G.; Appl. Phys. Lett. 97, 263107 (2010)Google Scholar
10. Sun, B. K., Zhang, X., Grigoropoulos, C. P.; Int. J. Heat Mass Transfer 40, 1591 (1997).Google Scholar
11. Doerk, G.S., Carraro, C., Maboudian, R.; ACS Nano 4, 4908 (2010)Google Scholar