Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T22:58:49.513Z Has data issue: false hasContentIssue false

Large Self-Assembled Peptide Fibers

Published online by Cambridge University Press:  14 March 2011

Justin R. Barone
Affiliation:
Biological Systems Engineering Dept., Virginia Tech, 303 Seitz Hall (0303), Blacksburg, VA 24061, U.S.A.
Ahmad Athamneh
Affiliation:
Biological Systems Engineering Dept., Virginia Tech, 303 Seitz Hall (0303), Blacksburg, VA 24061, U.S.A.
Get access

Abstract

Many systems, including peptide systems, have been identified that self-assemble into nanometer sized structures. However, continued self-assembly to the macroscopic scale has remained elusive even though nature routinely does it. Here, a unique hierarchical peptide self-assembly process is described from the nanometer to the micrometer scale.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Whitesides, G. M. and Grzybowski, B., Science 295(5564), 24182421 (2002).10.1126/science.1070821Google Scholar
2. Dobson, C. M., Nature 426, 884890 (2003).Google Scholar
3. Cherny, I. and Gazit, E., Angewandte Chemie International Edition 47, 40624069 (2008).Google Scholar
4. Zhang, S., Nat Biotech 21(10), 11711178 (2003).10.1038/nbt874Google Scholar
5. Oliver, W. C. and Pharr, G. M., Journal of Materials Research 7(6), 15641583 (1992).10.1557/JMR.1992.1564Google Scholar
6. Kasarda, D. D., Bernardin, J. E. and Thomas, R. S., Science 155(3759), 203205 (1967).Google Scholar
7. Mackintosh, S. H., Meade, S. J., Healy, J. P., Sutton, K. H., Larsen, N. G., Squires, A. M. and Gerrard, J. A., Journal of Cereal Science 49, 157162 (2009).10.1016/j.jcs.2008.08.003Google Scholar
8. Reddy, N. and Yang, Y., Biomacromolecules 8(2), 638643 (2007).Google Scholar
9. Woerdeman, D. L., Ye, P., Shenoy, S., Parnas, R. S., Wnek, G. E. and Trofimova, O., Biomacromolecules 6(2), 707712 (2005).10.1021/bm0494545Google Scholar
10. Knowles, T. P., Fitzpatrick, A. W., Meehan, S., Mott, H. R., Vendruscolo, M., Dobson, C. M. and Welland, M. E., Science 318, 19001903 (2007).10.1126/science.1150057Google Scholar
11. Kol, N., Adler-Abramovich, L., Barlam, D., Shnek, R. Z., Gazit, E. and Rousso, I., Nano Letters 5, 13431346 (2005).Google Scholar
12. Smith, J. F., Knowles, T. P., Dobson, C. M., MacPhee, C. E. and Welland, M. E., Proceedings of the National Academy of Sciences 103(43), 1580615811 (2006).Google Scholar
13. Babiker, E. F. E., Fujisawa, N., Matsudomi, N. and Kato, A., J. Agric. Food Chem. 44(12), 37463750 (1996).Google Scholar
14. Maeda, Y., Langmuir 17(5), 17371742 (2001).10.1021/la001346qGoogle Scholar
15. Maurer-Stroh, S., Debulpaep, M., Kuemmerer, N., de la Paz, M. L., Martins, I. C., Reumers, J., Morris, K. L., Copland, A., Serpell, L., Serrano, L., Schymkowitz, J. W. H. and Rousseau, F., Nat Meth 7(3), 237242 (2010).Google Scholar
16. Hamodrakas, S. J., Liappa, C. and Iconomidou, V. A., International Journal of Biological Macromolecules 41(3), 295300 (2007).10.1016/j.ijbiomac.2007.03.008Google Scholar
17. Kendrew, J. C., Dickerson, R. E., Strandberg, B. E., Hart, R. G., Davies, D. R., Phillips, D. C. and Shore, V. C., Nature 185(4711), 422427 (1960).Google Scholar
18. Marshall, K. E. and Serpell, L. C., Biochemical Society Transactions 037(4), 671676 (2009).10.1042/BST0370671Google Scholar