Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T23:29:55.775Z Has data issue: false hasContentIssue false

Kinetically controlled superstructural phases at the Sb/Si (5 5 12) interface

Published online by Cambridge University Press:  01 February 2011

Mahesh Kumar
Affiliation:
mahesh@mail.nplindia.ernet.in, National Physical Laboratory, New Delhi, Surface Physics and Nanostructures, India
Vinod Kumar Paliwal
Affiliation:
prasad@mail.nplindia.ernet.in, Dyal Singh College (University of Delhi), New Delhi, Physics, India
Govind
Affiliation:
prasad@mail.nplindia.ernet.in, National Physical Laboratory, New Delhi, Surface Physics and Nanostructures, India
A. G. Vedeshwar
Affiliation:
agni@physics.du.ac.in, University of Delhi, Physics and Astrophysic, India
S. M. Shivaprasad
Affiliation:
prasad@mail.nplindia.ernet.in, National Physical Laboratory, New Delhi, Surface Physics and Nanostructures, India
Get access

Abstract

The adsorption of Sb on the high index Si (5 5 12) has been studied at higher substrate temperature (HT) (800°C), using in situ surface characterization techniques like Auger Electron Spectroscopy (AES), Low Energy Electron Diffraction (LEED), and Electron Energy Loss Spectroscopy (EELS). The surface morphology of this high index Si (5 5 12) surface has row like trenches along (110) direction. We have performed the study of Sb adsorption and desorption on the Si (5 5 12) substrate held at different temperatures. The different pathways adopted during adsorption and desorption have suggested the dominant role of kinetics I forming various surface phases on the Si (5 5 12) substrate. The adsorption at room temperature resulted in the formation of (225) surface phase, while the adsorption at 680°C resulted in the (337) phase. The sequential thermal desorption of the room temperature and high temperature adsorbed surface resulted in the formation of (337) phases at 800°C, with anisotropic growth along one direction. While the adsorption at 800°C resulted in the formation of anisotropic (337) like phases, the further increase in the coverage formed a 2x Si (225) phase. Annealing this 2x Si (225) phase again resulted in the formation of anisotropic (337) phase. Thus formation of interface by controlling the growth kinetics can result in the formation of various tailored structures with desired properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schubert, E.F., Delta- doping of Semiconductors, Cambridge University Press; (1996).Google Scholar
2. Lifshits, V.G., Saranin, A.A. and Zotov, A.V., Surface phases on Silicon, Wiley, New York; (1994)Google Scholar
3. Paliwal, V. K., Vedeshwar, A. G. and Shivaprasad, S. M., Phys. Rev. B 66, 245404(2002).10.1103/PhysRevB.66.245404Google Scholar
4. Paliwal, V. K., Vedeshwar, A. G. and Shivaprasad, S. M., Surf. Sci. 513, L397(2002).10.1016/S0039-6028(02)01827-7Google Scholar
5. Paliwal, V. K., Vedeshwar, A. G. and Shivaprasad, S. M., Surf. Sci. 540, L617(2003).10.1016/S0039-6028(03)00847-1Google Scholar
6. Paliwal, V. K., Kumar, M. and Shivaprasad, S. M., Surf. Sci 585, 53(2005).10.1016/j.susc.2005.04.013Google Scholar
7. Kumar, M., Govind, , Paliwal, V.K., Shivaprasad, S.M.,596, 206(2005).Google Scholar
8. Baski, , Erwin, S. C. and Whitman, L. J., Science 269, 56, (1995).10.1126/science.269.5230.1556Google Scholar
9. Baski, A.A., Saud, K.M., Jones, K.M., App. Suf. Phy. 182, 6, (2001).Google Scholar
10. Song, H.H., Jones, K.M. and Baski, A.A., J. Vac. Sci. Technol. A 171, 1696, (1999).10.1116/1.581875Google Scholar
11. Blankenship, S.R., Song, H.H., Baski, A.A. and Carlisle, J.A., J. Vac. Sci. Technol. A171, 1615, 1999).10.1116/1.581860Google Scholar
12. Dickinson, J.W., Moore, J.C., Baaski, A‥AA., Surf. Sci. 561, 3, (2004).10.1016/j.susc.2004.05.013Google Scholar
13. Ahn, J.R., Yeom, H.W., Cho, E.S. and Park, C.Y., Phys. Rev. B69, 233311, (2004)10.1103/PhysRevB.69.233311Google Scholar
14. Lee, S. S., Kim, N. D., Hwang, C. G., Song, H. J. and Chung, J. W., Phys. Rev. B 66, 115317, (2002).10.1103/PhysRevB.66.115317Google Scholar
15. Woodworth, P.H., Moore, J.C. and Baski, A.A., Vac, J.. Sci. Technol. A 21, 1332, (2003).Google Scholar
16. Cho, S. and Seo, J.M., Surf. Sci. 565, 14, (2004).10.1016/j.susc.2004.07.004Google Scholar
17. Enta, Y., Suzuki, S., Kono, S. and Sakamoto, T., Phys. Rev. B 39, 56, (1989).Google Scholar