Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T23:37:20.158Z Has data issue: false hasContentIssue false

Junction Formation in Silicon by Rapid Thermal Annealing

Published online by Cambridge University Press:  22 February 2011

Richard B. Fair*
Affiliation:
MCNC, Center for Microelectronic Systems Technologies, Research Triangle Park, N.C. 27709 Department of Electrical EngineeringDuke University, Durham, N.C. 27706
Get access

Abstract

The feasibility of using isothermal RTA in annealing ion implanted layers for forming junctions has been investigated for the past 10 years. While many of the scientific details surrounding defect formation, transient diffusion and dopant activation remain to be clarified, RTA intrinsically is a viable annealing process which is essential for fabricating advanced silicon devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bohm, H. J., Wendt, H., Oppolzer, H., Masseli, K., and Kassing, R., J. Appl. Phys. 62, 2784 (1987).Google Scholar
2. Probst, V., Lippens, P., Hove, L. Van den, Maex, K., Schaber, H., and Keersmaecker, R. De, Proc. of the European Solid State Dev. Res. Conf., Bologna, Italy, 437 (Sept. 1987).Google Scholar
3. Jiang, H., Osburn, C. M., Smith, P., Griffis, D., McGuire, G., Rozgonyi, G. A., Mtg. Electrochem Soc., Los Angeles, Recent News Paper #737 (May 1989).Google Scholar
4. Carey, P. G., Sigmon, T. W., Press, R. L., and Fahlen, T. S., IEEE Electron Device Lett., EDL-6, 291 (1985).Google Scholar
5. Fair, R. B., Proceedings of the IEEE, Vol. 79, No. 11, 16871705, (1990).Google Scholar
6. PREDICT - PRocess Estimator for the Design of Integrated Circuit Technologies, Microelectronics Center of North Carolina.Google Scholar
7. Nygen, S., Ph.D. Thesis, The Royal Institute of Technology (KTH), Stockholm, Sweden (1989).Google Scholar
8. Verhaar, R. D. J., Bos, A. A., Kraaji, H., Wolters, R.A.M., Maex, K.. and Hove, L. Van den, 19th European Solid State Device Res. Conf., Berlin, Sept. 1989.Google Scholar
9. Marchiando, J. R., Roitman, P., Albers, J., IEEE Trans. Electron Devices, ED–32, 23221 (1985).Google Scholar
10. Michel, A. E., in Rapid Thermal Processing edited by Sedgwick, T. O., Seidel, T. E., and Tsaur, B. Y., (Mat. Res. Soc., Pittsburgh, PA 1986) p. 3.Google Scholar
11. Hodges, R. T., Baglin, J. E. E., Michel, A. E., Mader, S.M., Gelpey, J. C., in Energy Beam-Solid Interactions and Transient Thermal Processing edited by Fan, J. C. C., Johnson, N. M. (Mat. Res. Soc., Pittsburgh, PA,1984) p. 253.Google Scholar
12. Fair, R. B., Wortman, J. J., Liu, J., J. Electrochem. Soc., 131, 2387 (1984).Google Scholar
13. Hofker, W. K., Philips Res. Rep., 1 (1975).Google Scholar
14. Fair, R. B., IEEE Trans. Electron Devices, 35, 285 (1988).Google Scholar
15. Servidori, M., Angelucci, R., Cembali, F., Negrini, P., Solmi, S., Zaumseil, P., and Winter, U., J. Appl. Phys., 61,1834 (1987).Google Scholar
16. Solmi, S., Angelucci, R., Cembali, F., Servidori, M., and Anderle, M., Appl. Phys. Lett., 51, 331 (1987).Google Scholar
17. Cho, K., Numan, M., Finstad, R. G., Chu, W. K., Liu, J., Wortman, J. J., Appl. Phys. Lett., 47, 1321 (1985).Google Scholar
18. Kim, Y., Massoud, H. Z. and Fair, R. B., J. Electron Mater, 18, 143 (1989).Google Scholar
19. Antoniadis, D. A., Lin, A. M., Dutton, R. W., Appl. Phys. Lett., 33, 1030 (1978).Google Scholar
20. Mizuo, S. and Higuchi, H., Jpn. J. Appl. Phys., 20, 739 (1981).Google Scholar
21. Harris, R. M. and Antoniadis, D. A., Appl. Phys. Lett., 43, 937 (1983).Google Scholar
22. Jones, K. S., Prussin, S., and Weber, E. R., J. Appl. Phys., 62, 4114 (1987).Google Scholar
23. Seidel, T. E., Lischner, D. J., Pai, C. S., Knoell, R. V., Maher, D. M., and Jacobson, D. C., Nucl. Inst. Methods Phys. Res. B, 7/8, 251 (1985).Google Scholar
24. Seidel, T. E., Pai, C. S., Lischner, D. J., Maher, D. M., Knoell, R. V., Williams, J. S., Penumalli, B. R., and Jacobson, D. C., in Proceedings of the Materials Research Society edited by Biegelsen, D. K., Rozgonyi, G. A., Shank, C. V. (Mat. Res. Soc., Pittsburgh, PA 1985). pp. 329.Google Scholar
25. Sedgwick, T. O.. Michel, A. E., Deline, V. R., Cohen, S. A., and Lasky, J. B., J. Appl. Phys., 63, 1452 (1988).Google Scholar
26. Seidel, T. E., IEEE Electron Device Lett., EDL–4, 353 (1983).Google Scholar
27. Angelucci, R., Negrini, P. and Solmi, S., Applied Phys. Lett., 49, 1468 (1986).Google Scholar
28. Drowley, C. I., Adkission, J., Peters, D. and Chiang, S., Mat. Res. Soc. Symp. Proc., 35, 375 (1985).Google Scholar
29. Servidori, M., Sourek, Z., and Solmi, S., J. Appl. Phys., 62, 1723 (1987).Google Scholar
30. Kim, Y., Massoud, H. Z., Chevacharoenkul, S., and Fair, R. B. in Semiconductor Silicon 1990 edited by Huff, H. R., Barraclough, K. G., and Chikawa, J. (Ecectrochem. Soc.90–7, Pennington, N.J., 1990), pp. 437.Google Scholar
31. Sedwick, T. O., Nucl. Instr. and Methods Phys. Res., B37/38, 760 (1989).Google Scholar
32. Ozturk, M. C., Wortman, J. J., Osburn, C. M., Ajmera, A., Rozgonyi, G. A., Frey, E., Chu, W. K. and Lee, C., IEEE Trans. Electron Devices, 35, 659 (1988).Google Scholar
33. Michel, A. E. in Process Physics and Modeling in Semiconductor Technology. edited by Srinivasan, G. R., Plummer, J. D. and Pantelides, S. T. (Electrochem Soc. 91–4, Pennington, NJ, 1991) pp. 242.Google Scholar
34. Fair, R. B., IEEE Trans. Electron Dev., 37, 2237 (1990).Google Scholar
35. Hong, S. N., Ruggles, G. A., Wortman, J. J. and Ozturk, M.C., IEEE Trans. Electron Devices, 38, 476 (1991).Google Scholar
36. Solmi, S., Baruffaldi, F. and Canteri, R., J. Appl. Phys., 69, 2135 (1991).Google Scholar
37. McMahon, R. A., Hasko, D. G., Ahmed, H., Stoble, W. M., and Godfrey, D. J. in Energy Beam-Solid Interactions and Transient Thermal Processing 1984 edited by Biegelsen, D. K., Rozgonyi, G. A., and Shank, C. V. (Mat. Res. Soc. 35, Pittsburgh, PA, 1984) pp. 347.Google Scholar
38. Fair, R. B., ibid, pp. 381.Google Scholar
39. Tannenbaum, E., Sol. State Electron., 2, 123 (1961).Google Scholar
40. Finetti, M., Negrini, P., Solmi, S., and Nobile, D., J. Electrochem. Soc., 128, 1313 (1981).Google Scholar
41. Nobili, D., Armigliato, A., Finetti, M., Solmi, S., J. Appl. Phys., 53, 1484 (1982).Google Scholar
42. Kendall, D. L., Vries, D. B. De in Semiconductor Silicon edited by Haberecht, R. R. and Kern, E. L. (Electrochem. Soc., New York, 1969) pp. 97.Google Scholar
43. Fair, R. B. and Tsai, J. C. C., J. Electrochem. Soc., 122, 1689 (1975).Google Scholar
44. Kato, J. and Ono, Y., J. Electrochem. Soc., 132, 1730 (1985).Google Scholar
45. Cembali, F., Galloni, R., and Zignagi, Z., Rad. Eff., 26,161 (1975).Google Scholar
46. Miyao, M., Yoshihiro, N., Tokuyama, T., Mitsuishi, T., J. Appl. Phys., 49, 2573 (1978).Google Scholar
47. Sadana, D. K., Washburn, J., and Magee, C. W., J. Appl. Phys., 54, 3479 (1983).Google Scholar
48. Nobili, D. in Aggregation Phenomena of Point Defects in Silicon, edited by Sirtl, E. and Goorissen, J. (Electrchem Soc. 83–4, Pennington, NJ, 1982) pp. 189.Google Scholar
49. Orlowski, M., Subrahmanyan, R., Huffman, G., J. Appl. Phys., 71,164 (1992).Google Scholar
50. Tsai, M. Y., Morehead, F. F., Baglin, J. E. E., and Michel, A. E., J. Appl. Phys., 51, 3230 (1980).Google Scholar