Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T00:04:12.490Z Has data issue: false hasContentIssue false

IV-VI Semiconductor Mid-IR Lasers

Published online by Cambridge University Press:  01 February 2011

Patrick J. McCann
Affiliation:
pmccann@ou.edu, University of Oklahoma, 202 West Boyd Street, Room 219, Norman, OK, 73019, United States
Yurii Selivanov
Affiliation:
selivan@mail1.lebedev.ru, P. N. Lebedev Physical Institute, Russian Federation
Get access

Abstract

Mid-IR lasers fabricated from narrow bandgap IV-VI semiconductors are proven devices for molecular spectroscopy applications. Wide single-mode tunability, low waste heat generation, and large spectral coverage from about 1000 cm−1 (10 µm) to about 2500 cm−1 (4 µm) have allowed development of laser absorption spectroscopy instrumentation for fast and sensitive measurement of specific gas phase molecules. For example, IV-VI mid-IR lasers with emission in the 5.2 µm spectral range have recently enabled the development of breath analysis instruments for real-time measurement of exhaled nitric oxide (eNO). Laser tunability with current ramping is sufficient for simultaneous measurement of exhaled carbon dioxide (eCO2), a capability that allows highly accurate determination of eNO concentrations in the low ppb range, a sensitivity required for assessing airway inflammation in patients with asthma. After discussing emerging medical diagnostic applications this paper reviews recent progress in the development of liquid-nitrogen-free cryogenic cooling systems for IV-VI mid-IR lasers. A description of continuing research on the development of improved IV-VI lasers, where the primary objective is to fabricate devices with continuous wave (cw) operation at room temperature is then presented. Theoretical and experimental analysis of (111)-oriented multiple quantum well (MQW) IV-VI materials show that it should be possible to reduce lasing thresholds significantly. In addition, results from transferring IV-VI materials from low thermal conductivity growth substrates to higher thermal conductivity copper show that new laser packaging methods can significantly improve active region heat dissipation. Together, these new materials and device packaging methods promise to enable the fabrication of IV-VI mid-IR lasers with cw operation at room temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Beck, M., Hofstetter, D., Aellen, T., Faist, J., Oesterle, U., Ilegems, M., Gini, E., and Melchior, H., “Continuous-wave operation of a mid-infrared semiconductor laser at room-temperature”, Science 295, 301 (2002).10.1126/science.1066408Google Scholar
[2] Yates, D. H., “Role of nitric oxide in asthma”, Immunology and Cell Biology, 79, 178190 (2001).10.1046/j.1440-1711.2001.00990.xGoogle Scholar
[3] Debongnie, J., Pauwels, S., Raat, A., deMeeus, Y., Hoat, J., and Malinquet, P., “The urea breath test for Helicobacter Pylori”, Gut 35, 723, (1994).Google Scholar
[4] Narasimhan, L. R., Goodman, W., and Patel, C. K. N., “Correlation of breath ammonia with blood urea nitrogen and creatinine during hemodialysis”, Proc. National Academy of Sciences 98, 4617 (2001).10.1073/pnas.071057598Google Scholar
[5] Sehnert, S. S., Jiang, L., Burdick, J. F., Risby, T. H., “Breath biomarkers for detection of human liver diseases: preliminary study”, Biomarkers 7, 174 (2002).10.1080/13547500110118184Google Scholar
[6] Phillips, M., Cataneo, R. N., Ditkoff, B. A., Fisher, P., Greenberg, J., Gunawardena, R., Kwon, C.S., Rahbari-Oskoui, F., Wong, C., “Volatile Markers of Breast Cancer in the Breath”, The Breast Journal 9, 184 (2003).10.1046/j.1524-4741.2003.09309.xGoogle Scholar
[7] Ebeler, S. E., Clifford, A. J., and Shibamoto, T., “Quantitative analysis by gas chromatography of volatile carbonyl compounds in expired air from mice and human”, J. Chromatography B 702, 211 (1997).10.1016/S0378-4347(97)00369-1Google Scholar
[8] Smith, D., Wang, T., Sule-Suso, J., Spanel, P., Haj, A.E., “Quantification of acetaldehyde released by lung cancer cells in vitro using selected ion flow tube mass spectrometry”, Rapid Commun. Mass Spectrom. 17, 845 (2003).10.1002/rcm.984Google Scholar
[9] Owen, E., Trapp, V. E., Skutches, C. L., Mozzoli, M. A., Hoeldtke, R. D., Boden, G., and Reichard, G. A., “Acetone metabolism during diabetic ketoacidosis”, Diabetes 31, 242 (1982).10.2337/diab.31.3.242Google Scholar
[10] Studer, S. M., Orens, J. B., Rosas, I., Krishnan, J. A., Cope, K. A., Yang, S., Conte, J. V., Becker, P. B., and Risby, T. H., “Patterns and significance of exhaled-breath biomarkers in lung transplant recipients with acute allograft rejection”, J. Heart and Lung Transplantation 20, 1158 (2001).10.1016/S1053-2498(01)00343-6Google Scholar
[11] Phillips, M., Sabas, M., and Greenberg, J., “Increased pentane and carbon disulfide in the breath of patients with schizophrenia”, J. Clin. Pathol. 46, 861 (1993).10.1136/jcp.46.9.861Google Scholar
[12] Skeldon, K. D., Gibson, G. M., Wyse, C. A., McMillan, L. C., Monk, S. D., Longbottom, C., Padgett, M. J., “Development of high-resolution real-time sub-ppb ethane spectroscopy and some pilot studies in life science”, Applied Optics, 44, 4712 (2005).10.1364/AO.44.004712Google Scholar
[13] Smith, A. D., Cowan, J. O., Brassett, K. P., Herbison, G. P., and Taylor, D. R., “Use of exhaled nitric oxide measurements to guide treatment in chronic asthma”, New England Journal of Medicine 26, 2163 (2005).10.1056/NEJMoa043596Google Scholar
[14] Roller, C. B., Namjou, K., Jeffers, J., Potter, W., McCann, P. J., and Grego, J., “Simultaneous NO and CO2 measurements in human breath using a single IV-VI mid-infrared laser”, Optics Letters 27, 107 (2002).10.1364/OL.27.000107Google Scholar
[15] Roller, C. B., Namjou, K., Jeffers, J., Camp, M., McCann, P. J., and Grego, J., “Nitric oxide breath testing using tunable diode laser absorption spectroscopy: Application in respiratory inflammation monitoring”, Applied Optics 41, 6018 (2002).10.1364/AO.41.006018Google Scholar
[16] Roller, C., Kosterev, A. A., Tittel, F. K., Uehara, K., Gmachl, C., and Sivco, D. L., “Carbonyl sulfide detection with a thermoelectrically cooled mid-infrared quantum cascade laser,” Optics Letters 28, 2052–2045 (2003).10.1364/OL.28.002052Google Scholar
[17] Willis, C. M., Church, S. M., Guest, C. M., Cook, W. A., McCarthy, N., Bransbury, A. J., Church, M. R. T. and Church, J. C. T., “Olfactory detection of human bladder cancer by dogs: proof of principle study”, British Medical Journal 329, 712 (2004).10.1136/bmj.329.7468.712Google Scholar
[18] Machado, R. F., Laskowski, D., Deffenderfer, O., Burch, T., Zheng, S., Mazzone, P. J., Mekhail, T., Jennings, C., Stoller, J. K., Pyle, J., Duncan, J., Dweik, R. A., and Erzurum, S. C., “Detection of Lung Cancer by Sensor Array Analyses of Exhaled Breath”, Am. J. Respir. Crit. Care Med. 171, 1286 (2005).10.1164/rccm.200409-1184OCGoogle Scholar
[19] Stepanov, E. V., Milyaev, V. A., Selivanov, Yu. G., “Laser orthomolecular medical diagnostics”, Physics-Uspekhi 43, 417 (2000).10.1070/PU2000v043n04ABEH000720Google Scholar
[20] Shi, Z., Tacke, M., Lambrecht, A., and Böttner, H., “Midinfrared lead salt multi-quantum-well diode lasers with 282 K operation”, Applied Physics Letters 66, 2537 (1995).10.1063/1.113159Google Scholar
[21] McCann, P. J., Namjou, K., and Fang, X. M., “Above-Room-Temperature Continuous Wave Mid-Infrared Photoluminescence from PbSe/PbSrSe Quantum Wells”, Applied Physics Letters 75, 3608 (1999).10.1063/1.125403Google Scholar
[22] Fang, X. M., Namjou, K., Chao, I., McCann, P. J., Dai, N., and Tor, G., “Molecular Beam Epitaxy of PbSrSe and PbSe/PbSrSe Multiple Quantum Well Structures for use in Mid-Infrared Light Emitting Devices”, Journal of Vacuum Science and Technology 18, 1720 (2000).10.1116/1.591460Google Scholar
[23] Wu, H. Z., Dai, N., Johnson, M. B., McCann, P. J., Shi, Z. S., “Unambiguous Observation of Subband Transitions from Longitudinal Valley and Oblique Valleys in IV-VI multiple Quantum Wells”, Applied Physics Letters 78, 2199 (2001).10.1063/1.1361104Google Scholar
[24] McAlister, D. W., McCann, P. J., Namjou, K., Wu, H. Z. and Fang, X. M., “Mid-IR Photoluminescence from IV-VI Layers Grown on Silicon,” Journal of Applied Physics 89, 3514 (2001).10.1063/1.1347950Google Scholar
[25] Wu, H. Z., McCann, P. J., Alkhouli, O., Fang, X. M., McAlister, D., Namjou, K., Dai, N., Chung, S. J., and Rappl, P. H. O., “Molecular beam epitaxial growth of IV-VI multiple quantum well structures on Si(111) and BaF2(111) and optical studies of epilayer heating,” Journal of Vacuum Science and Technology B 19, 1447 (2001).10.1116/1.1385915Google Scholar
[26] Wu, H. Z., Dai, N., and McCann, P. J., “Experimental determination of deformation potentials and band nonparabolicity parameters for PbSe”, Physical Review B 66, 045303 (2002).10.1103/PhysRevB.66.045303Google Scholar
[27] Zasavitskii, I. I., Silva, E. A. de Andrada e, Abramof, E., and McCann, P. J., “Optical Deformation Potentials for PbSe and PbTe”, Physical Review B 70, 115302 (2004).10.1103/PhysRevB.70.115302Google Scholar
[28] Yang, A. L., Wu, H. Z., Li, Z. F., Chang, Y., Li, J. F., McCann, P. J., Fang, X. M., “Raman Scattering Study of PbSe Grown on (111) BaF2 Substrate”, Chinese Physics Letters 17, 606 (2000).Google Scholar
[29] Kinslar, P., Harrison, P., and Kelsall, R. W., “Intersubband Terahertz Lasers using Four-Level Asymmetric Quantum Wells”, Journal of Applied Physics 85, 23 (1999).10.1063/1.369435Google Scholar
[30] Shen, W. Z., Yang, H. F., Jiang, L. F., Wang, K., Yu, G., Wu, H. Z. and McCann, P. J., “Band gaps, effective masses and refractive indices of PbSrSe thin films: Key properties for mid-infrared optoelectronic device applications”, Journal of Applied Physics 91, 192 (2002).10.1063/1.1421634Google Scholar
[31] Yuan, S., Krenn, H., Springholz, G., Bauer, G., and Kriechbaum, M., “Large Refractive Index Enhancement in PbTe/Pb1-xEuxTe Multiquantum Well Structures”, Applied Physics Letters 62, 885 (1993).10.1063/1.108555Google Scholar
[32] Shi, Z., Lv, X., Zhao, F., Majumdar, A., Ray, D., Singh, R., and Yan, X. J., “[110] Orientated lead salt midinfrared lasers”, Applied Physics Letters 85, 2999 (2004).10.1063/1.1799240Google Scholar
[33] Lu, X., Shi, Z., “Theoretical investigations of [110] IV-VI lead salt edge-emitting lasers”, IEEE Journal of Quantum Electronics 41, 308 (2005).Google Scholar
[34] Felix, C. L., Bewley, W. W., Vurgaftman, I., Lindle, J. R., Meyer, J. R., Wu, H. Z., Xu, G., Khosravani, S., and Shi, Z., “Low-threshold optically pumped λ= 4.4 μm vertical-cavity surface-emitting laser with a PbSe quantumwell active region”, Applied Physics Letters 78, 3770 (2001).10.1063/1.1378808Google Scholar
[35] Shi, Z., Xu, G., McCann, P. J., Fang, X. M., Dai, N., Felix, C. L., Bewley, W. W., Vurgaftman, I., and Meyer, J. R., “IV-VI Compound Mid-Infrared High-Reflectivity Mirrors and Vertical-Cavity Surface-Emitting Lasers Grown by Molecular Beam Epitaxy”, Applied Physics Letters 76, 3688 (2000).10.1063/1.126750Google Scholar
[36] McAlister, D. W., McCann, P. J., Wu, H. Z. and Fang, X. M., “Fabrication of Thin Film Cleaved Cavities Using a Bonding and Cleaving Fixture”, IEEE Photonics Technology Letters 12, 22 (2000).10.1109/68.817456Google Scholar
[37] Rappl, P. H. O. and McCann, P. J., “Development of a Novel Epitaxial Layer Segmentation Method for Optoelectronic Device Fabrication”, IEEE Photonics Technology Letters 15, 374 (2003).10.1109/LPT.2002.807910Google Scholar
[38] Li, Y. F., Sow, A., Yao, C. and McCann, P. J., “Transfer of IV-VI Multiple Quantum Well Structures Grown by Molecular Beam Epitaxy from Si Substrates to Copper”, Thin Solid Films 488, 178 (2005).10.1016/j.tsf.2005.04.056Google Scholar
[39] Li, Y. F., McCann, P. J., Sow, A., Yao, C., and Kamat, P. C., “Improvement of Heat Dissipation Through Transfer of IV-VI Epilayers From Silicon to Copper”, IEEE Photonics Technology Letters 16, 2433 (2004).10.1109/LPT.2004.834908Google Scholar