Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-13T06:03:04.820Z Has data issue: false hasContentIssue false

Issues in Organics For Nonlinear Optics

Published online by Cambridge University Press:  16 February 2011

George I. Stegeman
Affiliation:
Creol, University Of Central Florida 12424 Research Parkway, Orlando, Fl 32826
William Torruellas
Affiliation:
Creol, University Of Central Florida 12424 Research Parkway, Orlando, Fl 32826
Get access

Extract

The potential of organic materials for nonlinear optics was recognized early with the identification of charge transfer concepts for second order Materials, and π-electron delocalization in conjugated polymers for third order effects.[l,2] Nevertheless, they have not been seriously considered for applications until the past five years over which applications to electro-optics have been vigorously pursued. At this point many of the relevant technological problems for electro-optics have been faced and solved. This progress has been driven by imminent applications in information processing and communications. Frequency conversion, specifically doubling of near infrared lasers into the blue for data storage etc., also relies on the second order nonlinearities. But progress towards efficient doublers has been dominated by other well-established Materials such as KTP and LiNbO3 because of the short time window perceived for applications.[3,4] However, because of the inherently large nonlinearities associated with organic Materials, one would expect that ultimately the most efficient doubling devices could be made from organic Materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] articles in Polymers for Lightwave Technology and Integrated Optics, edited by Hornak, L.A. (Marcel Dekker, N.Y., 1992)Google Scholar
[2] Wegner, G., Z. Naturforsch, 24B, 824 (1969).Google Scholar
[3] van der Poel, C.J., Bierlein, J.D., Brown, J.B. and Colak, S., Appl. Phys. Lett., 57, 2074 (1990)Google Scholar
[4] Fejer, M. M., Magel, G. A., Jundt, D. H., Byer, R. L., IEEE J.Quantum Electron. 28, 2631 (1992).Google Scholar
[5] Coulter, D.R., Miskowski, V.M., Perry, J.W., Wei, T.H., Van Stryland, E.W. and Hagan, D.J., Proceedings of SPIE Meeting on materials for Optical Switches, Isolators and Limiters, SPIE 1105, 42 (1989).Google Scholar
[6] Stegeman, G.I. and Miller, A., “Physics of all-optical switching devices”, book chapter in Photonic Switching. Vol I. ed. Midwinter, J., (Academic Press, Orlando, 1992), 81 (1993).CrossRefGoogle Scholar
[7] Ho, E.S.S., Iizuka, K., Freundorfer, A.P. and Wah, C.K.L>, IEEE J.Lightwave Techn., 9, 101 (1991);,+IEEE+J.Lightwave+Techn.,+9,+101+(1991);>Google Scholar
Wah, C.K.L., Iizuka, K. and Freundorfer, A.P., Appl. Phys. Lett., 63, 3110 (1993).Google Scholar
[8] Thackara, J.I., Lipscomb, G.F., Stiller, M.A., Ticknor, A.J. and Lytel, R., Appl. Phys. Lett., 52, 1031 (1988).Google Scholar
[9] Eich, M., Reck, B., Yoon, D.Y., Willson, C.G. and Bjorkland, G.C., J. Appl. Phys., 66, 3241 (1989)Google Scholar
[10] Shi, Y., Ranon, P.M., Steier, W.H., Xu, C., Wu, B. and Dalton, L.R., Appl. Phys. Lett., 63, 2168 (1993).Google Scholar
[11] Shi, R.F., Wu, M.H., Yamada, S., Cai, Y.M. and Garito, A.F., Appl. Phys. Lett., 63, 1173 (1993).Google Scholar
[12] Diemeer, M. D. J., Suyten, F. M. M., Trommel, E. S., McDonach, A., Copeland, J. M., Jenneskens, L. W. and Horsthuis, W. H. G., Electron. Lett. 26, 379 (1990).Google Scholar
[13] for example, Matsuura, T., Ando, S., Sasaki, S. and Yamamoto, F., Electron. Lett., 29, 269 (1993).CrossRefGoogle Scholar
[14] Skumanich, A., Jurich, M. and Swalen, J.D., Appl. Phys. Lett., 62, 446 (1993).Google Scholar
[15] Teng, C.C., Appl. Phys. Lett., 60, 1538 (1992).;Google Scholar
Tsang, et al, SPIE, San Diego, July 1993 Google Scholar
[16] Smith, B.A., Jurich, M.C., Moemer, W.E., Volksen, W., Best, M.E., Fleming, W.W., Swalen, J.D. and Bjorlland, G.C., Proceedings of SPIE Symposium on Optics. Imaging and Instrumentation. San Diego, 1993, paper 2025–63Google Scholar
[17] Clays, K., Armstrong, N.J. and Penner, T.L., J. Opt. Soc. Am. B, 10, 886 (1993).Google Scholar
[18] Penner, T., private communicationGoogle Scholar
[19] Harada, A., Okazaki, Y., Kamiyama, K. and Umegaki, S., Appl. Phys. Lett., 59, 1535–7 (1991).Google Scholar
[20] Bosshard, Ch., Flörsheimer, M., Kupfer, M. and Günter, P., Opt. Commun., 85, 247–53 (1991);Google Scholar
Flörsheimer, M., Kupfer, M., Bosshard, Ch., Looser, H. and Günter, P., Adv. Mater. Commun., 4, 795–8 (1992).Google Scholar
[21] Khanarian, G., Norwood, R.A., Haas, D., Feuer, B. and Karim, D., Appl. Phys. Lett., 57, 977–9 (1990);Google Scholar
Norwood, R.A. and Khanarian, G., Electron. Lett., 26, 2105–6 (1990).Google Scholar
[22] Khanarian, G., Mortazavi, M.A. and East, A.J., Appl. Phys. Lett., 63, 1462 (1993).Google Scholar
[23] Otomo, A., Mittler-Neher, S., Bosshard, C., Stegeman, G.I., Horsthuis, W.H.G. and Mohlmann, G.R., Appl. Phys. Lett., in pressGoogle Scholar
[24] for example, Holgren, C.T. and Ippen, E.P., Appl. Phys. Lett., 59, 635, (1991) ;Google Scholar
Hall, K.L., Darwish, A.M., Ippen, E.P., Koren, U. and Raybom, G., Appl. Phys. Lett., 62, 1320 (1993);Google Scholar
Davies, D.A.O., Fisher, M.A., Elton, D.J., Perrin, S.D., Adams, M.J., Kennedy, G.T., Grant, R.S., Roberts, P.D. and Sibbett, W., Electron. Lett., 29, 1710 (1993).Google Scholar
[25] Villeneuve, A., Al-hemyari, K., Kang, J.U., Ironside, C.N., Aitchison, J.S. and Stegeman, G.I., Electron. Lett., 29, 721 (1993);Google Scholar
Aitchison, J.S., Villeneuve, A. and Stegeman, G.I., Opt. Lett., 18, 1153 (1993).Google Scholar
[26] Islam, M.N., Ultrafast Fiber Switching Devices and Systems. (Cambridge University Press, Cambridge, 1992)Google Scholar
[27] Lawrence, B.L., Torruellas, W.E., Stegeman, G.I., Etemad, S., Baker, G., and J. Meth, Electron. Lett., submittedGoogle Scholar
[28] Kim, D.Y., Sundheimer, M., Otomo, A., Stegeman, G.I., Horsthuis, W.G.H. and Mohlmann, G.R., Appl. Phys. Lett., 63, 290 (1993).Google Scholar
[29] Yamashita, M., Torizuka, K. and Uemiya, T., Appl. Phys. Lett., 57, 1301, (1990) ;Google Scholar
Yamashita, M., Torizuka, K, Uemiya, T. and Shimada, J., Appl. Phys. Lett., 58, 2727 (1991)CrossRefGoogle Scholar
[30] Kim, D.Y., Torruellas, W., Kang, J., Bosshard, C., Stegeman, G.I., Vidakovic, P., Zyss, J., Moerner, W.E., Twieg, R. and Bjorkland, G., to be publishedGoogle Scholar
[31] Gorman, C.B. and Marder, S.R., Proc. Nati. Acad. Sci. USA, in press (1993).Google Scholar
[32] Townsend, P.D., Jackel, J.L., Baker, G.L., Shelbourne, J.A. III, and Etemad, S., Appl. Phys. Lett., 55, 1829 (1989).Google Scholar
[33] Sasaki, K., Sasaki, S. and Furukawa, O., Materials Research Society Symposium Proceedings on Electrical. Optical and Magnetic Properties of Organic Solid State Materials. Vol. 247, eds. Chiang, L.Y., Garito, A.F. and Sandman, D.J., 141–9 (1992).Google Scholar
[34] Aramaki, A., Assanto, G., Stegeman, G.I. and Marciniak, M., J.Lightwave Techn., 11, 1189 (1993).Google Scholar
[35] Wu, J.W., Helfin, J.R., Norwood, R.A., Wong, K.Y., Zamani-Kamiri, O. and Garito, A.F., J.Opt. Soc. Am. B, 1989, 4, 707 (1989).Google Scholar
[36] Williams, V.S., Ho, Z.Z., Peyghamberian, N., Gibbons, W.M., Grasso, R.P., O'Brien, M.K., Shannon, P.J. and Sun, S.T., Appl. Phys. Lett., 57, 2399 (1990).Google Scholar
[37] Norwood, R.A., Sounik, J.R., Holcomb, D., Popolo, J., Swanson, D., Spitzer, R. and Hansen, G., Opt. Lett., 17, 577–9 (1992).Google Scholar