Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T15:18:30.305Z Has data issue: false hasContentIssue false

Isolated Voids in Amorphous Silicon and Related Materials Measured by Effusion of Implanted Helium

Published online by Cambridge University Press:  09 August 2012

W. Beyer
Affiliation:
Malibu GmbH & Co.KG, Böttcherstrasse 7, D-33609, Bielefeld, Germany IEK5-Photovoltaik, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
W. Hilgers
Affiliation:
IEK5-Photovoltaik, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
D. Lennartz
Affiliation:
IEK5-Photovoltaik, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
F. Pennartz
Affiliation:
IEK5-Photovoltaik, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
P. Prunici
Affiliation:
Malibu GmbH & Co.KG, Böttcherstrasse 7, D-33609, Bielefeld, Germany
Get access

Abstract

Effusion measurements of hydrogen and implanted helium are reported for (undoped) amorphous and crystalline Si:H and related materials. Effusion of helium observed at temperatures > 600°C is attributed to isolated voids present in the material from the preparation process. While rather high void densities are detected for amorphous silicon films prepared by such deposition techniques like vacuum evaporation or sputtering, much smaller densities are found for plasma grown hydrogenated amorphous silicon (a-Si:H). For device-grade a-Si:H, the density of cavities which can trap helium is estimated to be about 2x1018/cm3at most, suggesting that crystalline silicon type divacancies are not the major hydrogen incorporation site.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Beyer, W., in Thin-Film Silicon Solar Cells, edited by Shah, A. (CRC Press, Boca Raton, FL, 2010) p.64.Google Scholar
Smets, A.H.M., Kessels, W.M.M., van de Sanden, M.C.M., Appl. Physics Lett. 82, 1547 (2003).CrossRefGoogle Scholar
Smets, A.H.M., Wronski, C.R., Zeman, M., van de Sanden, M.C.M., MRS Symp. Proc. 1245, 303 (2010).CrossRefGoogle Scholar
Cerofolini, G.F., Corni, F., Fi, S., Nonili, C., Ottaviani, G., Tonini, R., Materials Science and Engineering R27,1 (2000).Google Scholar
Gnidenko, A.A., Zavodinsky, V.G., Misiuk, A., Bak-Misiuk, J., Acta Physica Polonica A109, 353 (2006).CrossRefGoogle Scholar
Beyer, W., Phys. Status Solidi (c) 1, 1144 (2004).CrossRefGoogle Scholar
Griffioen, C.C., Evans, J.H., de Jong, P.C., Van Veen, A., Nuclear Instruments and Methods in Physics Research B27, 417 (1987).CrossRefGoogle Scholar
Beyer, W., Hilgers, W., Prunici, P., Lennartz, D., J. Non-Cryst. Solids, (2011) (in press).Google Scholar
Beyer, W., Einsele, F., in Advanced Characterization Techniques for Thin Film Solar Cells, edited by Abou-Ras, D., Kirchartz, T., Rau, U. (Wiley-VCH, Weinheim, Germany, 2011) p.449.CrossRefGoogle Scholar
Beyer, W., Zastrow, U., MRS Symp. Proc. 507, 679 (1998).CrossRefGoogle Scholar
Keinonen, J., Hautala, M., Rautala, E., Erola, M., Lahtinen, J., Huomo, H., Vehanen, A., Hautojärvi, P., Phys. Rev. B36, 1344 (1987).CrossRefGoogle Scholar
Luedtke, W.D., Landman, U., Phys. Rev. B40, 11733 (1989).CrossRefGoogle Scholar
Williamson, D.L., MRS Symp. Proc. 377, 251 (1995).CrossRefGoogle Scholar
Beyer, W., Zastrow, U., J. Non-Cryst. Solids 266269, 206 (2000).CrossRefGoogle Scholar
Mahan, A.H., Raboisson, P., Williamson, D.L., Tsu, R., Solar Cells 21, 117 (1987).CrossRefGoogle Scholar
Cardona, M., Phys. Status Solidi (b) 118, 463 (1983).CrossRefGoogle Scholar