Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T13:39:52.286Z Has data issue: false hasContentIssue false

Is there a Lower Limit to the Thermal Conductivity of Solids?

Published online by Cambridge University Press:  15 February 2011

R. O. Pohl
Affiliation:
Laboratory of Atomic & Solid State Physics, Cornell University, Ithaca NY 14853-2501
Get access

Abstract

The thermal conductivity of various systematically disordered crystals has been measured. It has been found that the lowest thermal conductivity above ∼100 K that can be achieved is equal to that of the amorphous phase. This experimentally observed lower limit of the thermal conductivity can be described with a model proposed by Einstein in which the elastic energy propagates in a random walk among the atoms which are vibrating with random phases, and which is called the minimum thermal conductivity. This heat transport mechanism resembles somewhat that commonly accepted in liquids.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Abeles, B., Beers, D.S., Cody, G.D. and Dismukes, J.P., Phys. Rev. 125, 44 (1962); E.F. Steigmeir, B. Abeles, Phys. Rev. 136, A1149 (1964); D. Gerlich, B. Abeles, R.M. Miller, J. Appl. Phys. 36, 76 (1965).Google Scholar
2. Glassbrenner, C.J. and Slack, G.A., Phys. Rev. 134, A 1058 (1964); also M.G. Holland and L.J. Neuringer, Proceedings of the International Conference on the Phvsics of Semiconductors, Exeter, 1962 (IOP, London 1962), p. 474.Google Scholar
3. Alexander, S., Entin-Wohlmann, O. and Orbach, R., Phys. Rev. B 34, 2726 (1986).CrossRefGoogle Scholar
4. Emin, David, in Proceedings of the Tenth International Symposium on Boron, Borides and Related Compounds, Albuquerque, NM, Aug. 26-30, 1990, APS conference Proceedings, T. Aselage et al., eds., in press.Google Scholar
5. Cahill, D.G., Cornell University, Ph.D. Thesis, Aug. 1989, unpublished.Google Scholar
6. Phillips, W.A., Rep. Prog. Phys. 50, 1657 (1987); A.K. Raychaudhuri and S. Hunklinger, Z. Physik B 57, 113 (1984); R.O. Pohl, Phase Transitions 5, 239 (1985).CrossRefGoogle Scholar
7. Cahill, D.G., Rev. Sci. Instrum. 61,802 (1990).Google Scholar
8. Einstein, A., Ann. Physik 35, 679 (1911).Google Scholar
9. Cahill, D.G. and Pohl, R.O., Solid State Commun. 70, 927 (1989).Google Scholar
10. Slack, G.A. in Solid State Physics 34, Seitz, F. and Turnbull, A.G., eds., Academic Press, New York, 1979, p. 1. See, in particular, p. 57.Google Scholar
11. Birch, F. and Clark, H., Am. Journ. of Science 238, 613 (1940); see, in particular p. 633.Google Scholar
12. Kittel, C., Phys. Rev. 75, 972 (1949).Google Scholar
13. Cahill, D.G. and Pohl, R.O., Phys. Rev. B 35, 4067 (1987).Google Scholar
14. Cahill, D.G. and Pohl, R.O., Phys. Rev. B 37, 8773 (1988).Google Scholar
15. Watson, S.K., Cahill, D.G., Pohl, R.O., in Phonons 89, edited by Hunklinger, S., Ludwig, W., Weiss, G., World Scientific, Singapore, 1990, p. 582.Google Scholar
16. Birge, N.O., Phys. Rev. B 34, 1631 (1986).Google Scholar
17. Dixon, P.K. and Nagel, S.R., Phys. Rev. Letters 61, 341 (1988).Google Scholar
18. Eucken, A. and Kuhn, E., Z. Physik. Chem. 134, 193 (1928).Google Scholar
19. Williams, W.S., Supplement an Bulletin de l' Institut International du Froid, Louvain, 1956, p. 119; Phys. Rev. 119 1021 (1960).Google Scholar
20. Baumann, F.C. and Pohl, R.O., Phys. Rev. 163, 843 (1967).CrossRefGoogle Scholar
21. Slack, G.A., Andersson, P. and Ross, R., General Electric Company Technical Information Services No. 86CRD213, February 1987.Google Scholar
22. Nathan, B.D., Lou, L.F., Tait, R.H., Solid State Commun. 19, 615 (1976).Google Scholar
23. De Yoreo, J.J., Knaak, W., Meissner, M., Pohl, R.O., Phys. Rev. B 34, 8828 (1986); see also for earlier refs.Google Scholar
24. Grannan, E.R., Randeria, M. and Sethna, J.P., Phys. Rev. Letters 60, 1402 (1988).Google Scholar
25. A more detailed discussion of the low temperature (T < 2K) thermal and also of elastic data of Ba l-x ,La x F 2+x , has been published previously: Cahill, D.G. and Pohl, R.O., Phys. Rev. B 39, 10477 (1989).Google Scholar
26. Harrington, J.A. and Walker, C.T., Phys. Rev. B 1, 882 (1970).Google Scholar
27. Subbarao, E.C.in Science and Technology of Zirconia. Advances in Ceramics, Vol.3, The American Ceramic Society, Columbus, OH, Heuer, A.H. and Hobbs, L. W., eds. (1981), p. 1.Google Scholar
28. Walker, F.J. and Anderson, A.C., Phys. Rev. B 29, 5881 (1984).Google Scholar
29. Cahill, D.G., Fischer, H.E., Klitsner, T., Swartz, E.T., Pohl, R.O., J. Vac. Sci. Technol. A7, 1259 (1989).Google Scholar