Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T13:14:12.047Z Has data issue: false hasContentIssue false

Iron Manganites Synthesis by the Soft Chemistry Method

Published online by Cambridge University Press:  21 March 2011

Herve Coradin
Affiliation:
Centre Interuniversitaire de Recherche et d'Ingenierie des Materiaux UMR CNRS 5085, LCMIE, Universite Paul Sabatier, 118 route de Narbonne 31062 Toulouse, France
Sophie Guillemet-Fritsch
Affiliation:
Centre Interuniversitaire de Recherche et d'Ingenierie des Materiaux UMR CNRS 5085, LCMIE, Universite Paul Sabatier, 118 route de Narbonne 31062 Toulouse, France
Fabrice Agnoli
Affiliation:
Centre Interuniversitaire de Recherche et d'Ingenierie des Materiaux UMR CNRS 5085, LCMIE, Universite Paul Sabatier, 118 route de Narbonne 31062 Toulouse, France
Philippe Tailhades
Affiliation:
Centre Interuniversitaire de Recherche et d'Ingenierie des Materiaux UMR CNRS 5085, LCMIE, Universite Paul Sabatier, 118 route de Narbonne 31062 Toulouse, France
Abel Rousset
Affiliation:
Centre Interuniversitaire de Recherche et d'Ingenierie des Materiaux UMR CNRS 5085, LCMIE, Universite Paul Sabatier, 118 route de Narbonne 31062 Toulouse, France
Get access

Abstract

The iron manganites FexMn(3−x)O4 synthesis by soft chemistry method have been studied. The main difficulty is to obtain single phase spinel with high Mn content (0.4< x < 1.3). Oxalate precursor powders of these materials with controlled shape and nanoscopic size have been prepared. The precursors are then heat treated with a H2/H2O/N2 gas mixture at low temperature. The resulting stoechiometric spinels are metastable phases with high specific surface area and are highly reactive toward oxygen. Therefore, these oxide can be oxidized in air at low temperature in order to produce mixed valence defect manganites FexMn(3−x)O4+δ with a good reproducibility on the oxygen content. Although, some problems persist for the higher Mn contents, as the oxygen partial pressure for the reduction must be controlled precisely in order to produce the stoechiometric spinel at low temperature. The development of a low temperature reduction system, with oxygen partial pressure controlled by oxygen electrochemical pumping, is in progress.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Tailhades, P., Gillot, B., Rousset, A., J. Phys.IV France, 7, C1249 (1997)Google Scholar
[2] Tailhades, P., Villette, C., Rousset, A., Kulkarni, G. U., Kannan, K. R., Rao, C. N. R., Lenglet, M., J. Solid State Chem., 141, 56 (1998)10.1006/jssc.1998.7914Google Scholar
[3] Agnoli, F., Albouy, B., Tailhades, P., Rousset, A., C.R. Acad. Sci. Paris, t.2, Série II c, 525 (1999)Google Scholar
[4] Rezlescu, E., Rezlescu, N., J. Magn. Magn. Mater., 193, 501 (1999)10.1016/S0304-8853(98)00482-XGoogle Scholar
[5] Wickham, D.G., J. Inorg. Nucl. Chem., 31, 313 (1969)Google Scholar
[6] Holba, P., Khilla, M.A., Krupicka, S., J. Phys. Chem. Solids, 34, 387 (1973)Google Scholar
[7] Guillemet-Fritsch, S., Viguié, S., Rousset, A., J. Solid State Chem., 146, 245 (1999)Google Scholar
[8] Mason, B., Geol. Föreh. Stockholm Föerh, 65, 97 (1943)Google Scholar
[9] Mollard, P., Collomb, A., Devenyi, J., Rousset, A., I.E.E.E Trans. Mag., 11, 3, 894 (1975)Google Scholar
[10] Rousset, A., Mollard, P., Bonino, C., Gougeon, M., Tailhades, P., European Patent, EP 86 905 853.7.Google Scholar
[11] Deyrieux, Peneloux, Bull. Soc. Chim. Fr., 2675 (1969)Google Scholar
[12] Stoner, E. C., Wohlfarth, E. P., Phil. Trans. R. Soc. London Ser., A240, 599 (1948)Google Scholar
[13] Gillot, B., Guendouzi, M. El, Tailhades, P., Rousset, A., Reactivity of Solids, 1, 139 (1986)10.1016/0168-7336(86)80041-9Google Scholar
[14] Battault, T., Legros, R., Rousset, A., J. Eur. Ceram. Soc., 15, 1141 (1995)Google Scholar
[15] Gillot, B., Laarj, M., Kacim, S., J. Mater. Chem., 7, 5, 827 (1997)10.1039/a607179aGoogle Scholar
[16] Fritsch, S., Navrotsky, A., J. Am. Ceram. Soc., 79, 7, 1761 (1996)10.1111/j.1151-2916.1996.tb07993.xGoogle Scholar
[17] Laberty, C., Navrotsky, A., Geoch. Cosm. Acta, 62, 17, 2905 (1998)Google Scholar
[18]Knacke, O., Kubachewski, O., Hesselmann, K., Thermochimical Properties of Inorganic Substances, Spinger-Verlag (1991)Google Scholar
[19] Bonsdorf, G., Schäfer, K., Teske, K., Langbein, H., Ullmann, H., Solid State Ionics, 110, 73 (1998)Google Scholar
[20] Besson, J., Deportes, C., Kleitz, M., French Patent, 1.580.819 (1969)Google Scholar
[21] Agrawal, Y. K., Short, D. W., Gruenke, R., Rapp, R. A., J. Electochem. Soc., 121, 3, 354 (1974)Google Scholar