Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T05:29:23.809Z Has data issue: false hasContentIssue false

Ion irradiation effects in silicon nanowires

Published online by Cambridge University Press:  04 August 2011

K. Nordlund
Affiliation:
Helsinki Institute of Physics and Department of Physics, P.O. Box 43, FI-00014 University of Helsinki, Finland
S. Hoilijoki
Affiliation:
Helsinki Institute of Physics and Department of Physics, P.O. Box 43, FI-00014 University of Helsinki, Finland
E. Holmstr¨om
Affiliation:
Helsinki Institute of Physics and Department of Physics, P.O. Box 43, FI-00014 University of Helsinki, Finland
Get access

Abstract

Ion irradiation effects in nanowires are of increasing interest due to potential applications of the wires as e.g. current-carrying elements in transistors or as efficient light emitters. Although several experiments have already demonstrated such functionalities, very few theoretical studies on the fundamental mechanisms of ion irradiation have been carried out. To shed light on the basic mechanisms of nanowire irradiation, we have simulated 0.03- 10 keV Ar ion irradiation of Si nanowires with a < 111 >-oriented axis and with all side facets being < 112 >. We compare the results with those for Si surfaces and bulk. The results show that the damage production in the nanowire is strongly influenced by surface effects.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hofmann, S. et al. , J. Appl. Phys. 94, 6005 (2003).10.1063/1.1614432Google Scholar
2. Hoffmann, S. et al. , Nano Letters 9, 1341 (2009).10.1021/nl802977mGoogle Scholar
3. Krasheninnikov, A. V. and Nordlund, K., J. Appl. Phys. (Applied Physics Reviews) 107, 071301 (2010).10.1063/1.3318261Google Scholar
4. Allen, M. P. and Tildesley, D. J., Computer Simulation of Liquids(Oxford University Press, Oxford, England, 1989).Google Scholar
5. Nordlund, K., 2006, PARCAS computer code. The main principles of the molecular dynamics algorithms are presented in [17, 20]. The adaptive time step and electronic stopping algorithms are the same as in [21].Google Scholar
6. Stillinger, F. H. and Weber, T. A., Phys. Rev. B 31, 5262 (1985).10.1103/PhysRevB.31.5262Google Scholar
7. Holmstrom, E., Kuronen, A., and Nordlund, K., Phys. Rev. B 78, 045202 (2008).10.1103/PhysRevB.78.045202Google Scholar
8. Holmstr¨om, E., Krasheninnikov, A. V., and Nordlund, K., in Ion Beams and Nano-Engineering, MRS Symposium Proceedings, edited by Ila, D.. (MRS, Warrendale, PA, USA, 2009).Google Scholar
9. Ziegler, J. F., Biersack, J. P., and Littmark, U., The Stopping and Range of Ions in Matter (Pergamon, New York, 1985).10.1007/978-1-4615-8103-1_3Google Scholar
10. Aoki, T. et al. , Nucl. Inst. Meth. Phys. Res. B 180, 312 (2001).10.1016/S0168-583X(01)00437-2Google Scholar
11. Aoki, T., Matsuo, J., and Takaoka, G., Nucl. Inst. Meth. Phys. Res. B 202, 278 (2003).10.1016/S0168-583X(02)01869-4Google Scholar
12. Fulk, C. et al. , J. Electr. Mat. 35, 1449 (2006).10.1007/s11664-006-0282-yGoogle Scholar
13. Grein, C. H., Crys, J.. Growth 180, 54 (1997).10.1016/S0022-0248(97)00199-1Google Scholar
14. Ponomareva, I., Menon, M., Skrivastava, D., and Ansdriotis, A. N., Phys. Rev. Lett. 95, 265502 (2005).10.1103/PhysRevLett.95.265502Google Scholar
15. Berendsen, H. J. C. et al. , J. Chem. Phys. 81, 3684 (1984).10.1063/1.448118Google Scholar
16. Hoilijoki, S., Holmstr¨om, E., and Nordlund, K., J. Appl. Phys. (2011), submitted for publication.Google Scholar
17. Nordlund, K. et al. , Phys. Rev. B. 57, 7556 (1998).10.1103/PhysRevB.57.7556Google Scholar
18. Tolvanen, A., Kotakoski, J., Krasheninnikov, A. V., and Nordlund, K., Appl. Phys. Lett. 91, 173109 (2007).10.1063/1.2800807Google Scholar
19. Holmstr¨om, E., Toikka, L., Krasheninnikov, A. V., and Nordlund, K., Phys. Rev. B. 82, 045420 (2010).10.1103/PhysRevB.82.045420Google Scholar
20. Ghaly, M., Nordlund, K., and Averback, R. S., Phil. Mag. A 79, 795 (1999).10.1080/01418619908210332Google Scholar
21. Nordlund, K., Comput. Mater. Sci. 3, 448 (1995).10.1016/0927-0256(94)00085-QGoogle Scholar