Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-28T23:39:05.022Z Has data issue: false hasContentIssue false

Ion Beam Synthesis Of Cds, ZnS, And PbS Compound Semiconductor Nanocrystals

Published online by Cambridge University Press:  10 February 2011

C. W. White
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN
J. D. Budai
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN
A. L. Meldrum
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN
S. P. Withrow
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN
R. A. Zuhr
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN
E. Sonder
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN
A. Purezky
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN
D. B. Geohegan
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN
J. G. Zhu
Affiliation:
New Mexico State University, Las Cruces, NM
D. O. Henderson
Affiliation:
Fisk University, Nashville, TN
Get access

Abstract

Sequential ion implantation followed by thermal annealing has been used to form encapsulated CdS, ZnS, and PbS nanocrystals in SiO2 and Al2O3 matrices. In SiO2, nanoparticles are nearly spherical and randomly oriented, and ZnS and PbS nanocrystals exhibit bimodal size distributions. In Al2O3, nanoparticles are facetted and oriented with respect to the matrix. Initial photoluminescence (PL) results are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Microcrystalline and Nanocrystalline Semiconductors,” ed. by Brus, L., Collins, R. W., Hiroshi, M., Koch, F., and Tsai, C. C., Mat. Res. Soc. Proc. 358 (MRS, Pittsburgh, 1995).Google Scholar
2.Advances in Microcrystalline and Nanocrystalline Semiconductors-1996,” ed. by Alivisatos, A. P., Fauchet, P., Shimizu, I., Collins, R., Shimuder, T., and Vial, J. C., Mat. Res. Soc. Proc.452 (MRS, Pittsburgh, 1997).Google Scholar
3. Alivisatos, A. P., Science 271, 933 (1996).Google Scholar
4. White, C. W., Budai, J. D., Withrow, S. P., Zhu, J. G., Pennycook, S. J., Zuhr, R. A., Hembree, D. M. Jr, Henderson, D. O., Magruder, R. H., Yacaman, M. J., Mondragon, G., and Prawer, S., Nucl. Instrum. Methods in Physics Res. B 127/128, 545 (1997).Google Scholar
5. Budai, J. D., White, C. W., Withrow, S. P., Zuhr, R. A., and Zhu, J. G., Mat. Res. Soc. Proc. 452, 89 (1997).Google Scholar
6. Rossetti, R., Hull, R., Gibson, J. M., and Brus, L. E., J. Chem. Phys. 82, 552 (1985).Google Scholar
7. Murray, C. B., Norris, D. J., and Bawendi, M. G., J. Am. Chem. Soc. 115, 8706 (1993).Google Scholar
8. Sukumar, V. and Doremus, R. H., Phys. Stat. Sol. (b) 179, 307 (1993).Google Scholar
9. Potter, B. G. and Simmons, J. H., Phys. Rev. B 37, 10838 (1988).Google Scholar
10. Bhargava, R. N., Gallagher, D., Hong, X., and Nurmikko, A., Phys. Rev. Lett. 72, 416 (1994).Google Scholar
11. Khosravi, A., Kundu, M., Jatwa, L., Deshpande, S. K., Bhagwat, U. A., Sastry, M., and Kulkarni, S. K., Appl. Phys. Lett. 67, 2702 (1995).Google Scholar
12. Bliss, D. E., Wilcoxon, J. P., Newcomer, P. P., and Samara, G. A., Mat. Res. Soc. Proc. 358, 265 (1995).Google Scholar
13. Budai, J. D., White, C. W., Withrow, S. P., Chisholm, M. F., Zhu, J. G., and Zuhr, R. A., Nature 390 384 (1997).Google Scholar