Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T23:28:41.066Z Has data issue: false hasContentIssue false

Ion Assisted Nucleation in Amorphous Silicon: Mechanism and Theoretical Description

Published online by Cambridge University Press:  21 February 2011

C. Spinella
Affiliation:
CNR-IMETEM, stradale Primosole 50,195121 Catania (ITALY)
S. Lombardo
Affiliation:
CNR-IMETEM, stradale Primosole 50,195121 Catania (ITALY)
F. Priolo
Affiliation:
Dipartimento di Física dell'Université, corso Italia 57,195129 Catania (ITALY)
S.U. Campisano
Affiliation:
Dipartimento di Física dell'Université, corso Italia 57,195129 Catania (ITALY)
Get access

Abstract

We present new results on the ion-assisted amorphous to polycrystal transition in silicon. The grain growth velocity vg and the nucleation rate r exhibit quite different behaviours: i) ion irradiation enhances r by a factor which is several orders of magnitude larger than that observed for vg; ii) irradiation with lighter ions produces a decrease of vg and a strong increase of r; iii) the increase of dose rate produces a decrease of both vg and r, but is particulary severe for r. These results have been explained by assuming that ion irradiation produces three fundamental effects: i) generation of long living defects which increase the free energy of the amorphous phase to the value of the fully unrelaxed amorphous silicon, causing the decrease of the thermodynamic barrier to nucleation; ii) generation of defects promoting the transition kinetics at concentrations well above the thermal equilibrium value; iii) prompt amorphization of a small volume at the surface of each crystalline grain.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Roorda, W.C. Sinke, Poate, J.M., Jacobson, DC, Dierker, S., Dennis, B.S., Eagleshman, DJ., Spaepen, F., and Fuoss, F., Phys. Rev. B44, 3702 (1991)Google Scholar
2 Roorda, S. Doom, Sinke, W.C., Scholte, P.M.L.O., and van Loenen, E., Phys. Rev. Lett. 62, 1880 (1989)Google Scholar
3 Coffa, F. Priolo, and Battaglia, A., Phys. Rev. Lett. 70, 3756 (1993)Google Scholar
4 Shin, and Atwater, H.A., Phys. Rev. B48, 5964 (1993)Google Scholar
5 Grimaldi, M.G., Baeri, P., and Malvezzi, MA., Phys. Rev. B44, 1546 (1991)Google Scholar
6 Im, J.S. and Atwater, H.A., Appl. Phys. Lett. 57, 1766 (1990)Google Scholar
7 Johnson, W.A and Mehl, R.F., Trans. Am. Instrum. Min. Metal. Pet. Eng. 135, 416 (1939)Google Scholar
8 Avrami, M., J. Chem. Phys. 9, 177 (1941)Google Scholar
9 Olson, G.L. and Roth, J.A., Mater. Sei. Rep. 3, 1 (1988)Google Scholar
10 Iverson, R.B. and Reif, R., J. Appl. Phys. 62, 1675 (1987)Google Scholar
11 Kelton, K.F., Greer, A.L., and Thompson, C.V., J. Chem. Phys. 79, 6261 (1983)Google Scholar
12 Jackson, K. A., J. Mater. Res. 3, 1218 (1988)Google Scholar