No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
Nd40Fe30Co15Al10B5 bulk amorphous prepared by high energy milling shows a coercivity of 8.1 kOe with a Curie temperature of 645 K. The controlled nanocrystallization enhances the coercivity to 20 kOe and the remanence ratio is equal to 0.59. The coexistence of two crystalline magnetic phases, ferromagnetic Nd2(Fe,Co,Al)14B and antiferromagnetic Nd6(Fe,Co,Al)14 are revealed by x-ray diffraction, high-resolution transmission electron microscopy, magnetization measurements, and Mössbauer spectrometry. The grain size for optimal magnetic properties is around 30 nm. The nucleation process may play a leading role in the high magnetic behavior.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.