Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T19:35:27.333Z Has data issue: false hasContentIssue false

Investigation of the phase state of transformation shear bands in superelastic Ni-rich NiTi shape memory alloys with synchrotron diffraction

Published online by Cambridge University Press:  01 February 2011

W. W. Schmahl
Affiliation:
Fakultät für Geowissenschaften, Ruhr-University, D-44780 Bochum, Germany
A. Baruj
Affiliation:
Institut für Werkstoffe, Ruhr-University, D-44780 Bochum, Germany
J. Khalil-Allafi
Affiliation:
Fakultät für Geowissenschaften, Ruhr-University, D-44780 Bochum, Germany Faculty of Materials Engineering, Sahand University of Technology, Tabriz, Iran
H. Nebel
Affiliation:
Fakultät für Geowissenschaften, Ruhr-University, D-44780 Bochum, Germany
Get access

Abstract

The deformation of superelastic NiTi due to the stress-induced transition from cubic B2 to monoclinic B19′ phase is localised in a Lüders-band-like transformation shear bands (TSB). We investigate the phase state and texture in the bands in-situ using diffraction with high-energy synchrotron-radiation. Residual austenite is observed to persist up to the end of the superelastic plateau in the stress-strain curve. The deformation corresponds to a displacement of the boundary of the TSB. After a certain volume of the specimen has transformed when the boundary has passed by, there is no further change of the crystallographic state of this volume up to the end of the macroscopic stress-strain plateau. The variant orientation texture is different at the surface from that present in the bulk.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Otsuka, K., Wayman, C.M. (Eds.), Shape memory materials (Cambridge University Press, Cambridge, 1998)Google Scholar
2. Shaw, J.A., Kyriakides, S., Mech, J.: Phys. Solids 43, 1243 (1995).Google Scholar
3. Shaw, J.A., Kyriakides, S., Int. J. Plast. 13, 837 (1997).Google Scholar
4. Shaw, J.A., Kyriakides, S., Acta Mater. 45, 683 (1997)Google Scholar
5. Brinson, L.C., Schmidt, I., Lammering, R., J. Mech. Phys. Sol. 52, 1549 (2004)Google Scholar
6. Schmahl, W.W., Khalil-Allafi, J., Hasse, B., Wagner, M., Heckmann, A., Somsen, Ch., Mat. Sci. Engin. A 378, 81, 2004 Google Scholar
7. Heckmann, A., Hornbogen, E., Mater. Sci. Forum 394–3, 325 (2001)Google Scholar
8. Hammersley, A.P., Svensson, S.O., Thompson, A., Graafsma, H., Kvick, Å., Moy, J.-P., Rev. Sci. Instr., 66, 2729 (1995)Google Scholar
9. von Dreele, R.B., J. Appl. Cryst. 30, 517 (1997)Google Scholar
10. Mercier, O., Melton, K.N., Gremaud, G., Haegi, J., J. Appl. Phys. 51, 1833 (1980)Google Scholar
11. Myazaki, S., Kimura, S. et al., Scr. Metall., 17, 1057 (1983).Google Scholar
12. Myazaki, S., Imai, T., et al., Phys. Metall. Mater. Sci. 17, 115 (1986).Google Scholar