Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T22:31:23.105Z Has data issue: false hasContentIssue false

Investigation of Resiliency of Carbon Nanotubes and Gallium Nitride Nanocircuits to Simulated Space Radiation

Published online by Cambridge University Press:  01 February 2011

B. W. Jacobs
Affiliation:
Michigan State University, East Lansing, MI 48824, USA
V. M. Ayres
Affiliation:
Michigan State University, East Lansing, MI 48824, USA
M. A. Crimp
Affiliation:
Michigan State University, East Lansing, MI 48824, USA
R. M. Ronningen
Affiliation:
Michigan State University, East Lansing, MI 48824, USA
A. F. Zeller
Affiliation:
Michigan State University, East Lansing, MI 48824, USA
H. C. Shaw
Affiliation:
NASA Goddard Space Flight Center, Code 562, Greenbelt, MD 20771, USA
J. B. Benavides
Affiliation:
NASA Goddard Space Flight Center, Code 562, Greenbelt, MD 20771, USA
A. J. Kogut
Affiliation:
NASA Goddard Space Flight Center, Code 562, Greenbelt, MD 20771, USA
J. M. Halpern
Affiliation:
Department of Chemistry, Howard University, Washington, DC 20059, USA
M. P. Petkov
Affiliation:
NASA Jet Propulsion Laboratory, Pasadena, CA 91109, USA
Get access

Abstract

Heavy ion irradiations of single and multi walled carbon nanotubes and total ionization dose of gallium nitride nanowires were investigated. Post irradiation analyses of samples were performed with transmission and scanning electron microscopy, atomic force microscopy and micro Raman spectroscopy.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Leon, R., Marcinkevicius, S., Siegert, J., Cechavicius, B., Magness, B., Taylor, W. and Lobo, C., IEEE Trans. Nucl. Sci., 49, 2844 (2002).Google Scholar
2. Ionascut-Nedelcescu, A., Carlone, C., Houdayer, A., von Bardeleben, H. J., Cantin, J.-L., and Raymond, S., IEEE Trans. Nucl. Sci., 49, 2733 (2002).Google Scholar
3. Halpern, J., “Growth of Wide Bandgap GaN Nanowires and Construction of a Simple GaN UV Phototransistor”, Colloquium About Special Questions in Physics, University of Muenster, Muenster, Germany, June 2002 Google Scholar
4. Barnaby, H.J., Smith, S.K., Schrimpf, R.D., Fleetwood, D.M., and Pease, R.L., IEEE Trans. Nucl. Sci., 49, 2650 (2002).Google Scholar
5. Lenahan, P. and Conley, J.F. Jr, Appl. Phys. Lett., Vol. 71, pp.24132423 (1998);Google Scholar
Yang, A.Y., Lenahan, P.M., and Conley, J. F. Jr, IEEE Trans. Nucl. Sci., 49, 2844 (2002).Google Scholar
6. Ma, T.P., Dressendorfer, P.V., Ionizing Radiation Effects in MOS Devices & Circuits, chapter 1, John Wiley and Sons, Toronto, 1989 Google Scholar
7. Heinze, S., Tersoff, J., Martel, R., Derycke, V., Appenzeller, J., and Avouris, P., Phys. Rev. Lett., 89 (2002)Google Scholar
8. Avouris, P., Chem. Phys., 281, 429 (2002).Google Scholar
9. Saito, R., Dresselhaus, G., and Dresselhaus, M., Physical Properties of Carbon Nanotubes, Imperial College Press, London, 1998 Google Scholar