Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T05:32:34.241Z Has data issue: false hasContentIssue false

Investigation of Magnetic Behaviour of Mechanical Activation Derived Multiferroic BiFeO3

Published online by Cambridge University Press:  01 February 2011

Ashish Garg
Affiliation:
a.garg.98@gmail.com, Iit Kanpur, Materials and Metallurgical Engineering, WL#104,, MULTIFUNCTIONAL LABORATORY,, Department of Materials Engg., IIT KANPUR-208016,, INDIA, KANPUR, 208016, India, 0091-512-2597904, 0091-512-2597505
Hari Kishan Thota
Affiliation:
thari@iitk.ac.in, Indian Institute of Technology, Materials and Metallurgical Engineering, Kanpur, 208016, India
Brajesh Pandey
Affiliation:
bpandey@iitk.ac.in, Indian Institute of Technology, Department of physics, Kanpur, 208016, India
H C Verma
Affiliation:
hcverma@iitk.ac.in, Indian Institute of Technology, Department of physics, Kanpur, 208016, India
Get access

Abstract

Here we report on the synthesis of multiferroic BiFeO3 ceramics by mechanical activation and detailed investigation into its magnetic behavior. The mechanically milled ceramic was calcined at temperatures up to 800°C. X-ray diffraction studies show only the pure BiFeO3 phase forms at 700°C. Vibrating sample magnetometer (VSM) measurements were carried out up to 1.5 Tesla and the results show a weak magnetic ordering in the ceramics. The magnetic measurements were also done on the samples heat treated under various cooling conditions. VSM measurements showed pronounced effect of cooling on the Magnetization vs Field curves. Mössbauer measurements show that short range Fe2O3 ordering is still present in the sample that goes undetected by XRD. This component decreases as the calcination temperature is increased. The nature of magnetic ordering improves upon heating from 600 to 700°C, also suggested by pure BiFeO3 phase formation at 700°C. Magnetization vs Temperature measurements conducted on the sample heat treated at 700°C for 1hr followed by cooling in air show an antiferromagnetic transition at ∼370°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Teague, J. R., Gerson, R. and James, W. J.,Solid State Communications 8, 1073 (1970).Google Scholar
2. Li, J., Wang, J., Wuttig, M., Ramesh, R., Wang, N., Ruette, B., Pyatakov, A. P., Zvezdin, A. K. and Viehland, D., Appl. Phys. Lett. 84, 5261 (2004).Google Scholar
3. Wang, Y. P., Zhou, L., Zhang, M. F., Chen, X. Y., Liu, J. M. and Liu, Z.G., Appl. Phys. Lett. 84, 1731 (2004).Google Scholar
4. Sosnowska, I., Neumaier, T. P. and Steichele, E.,J.|Phys. C 15, 4835 (1982).Google Scholar
5. Kumar, M. M., Palkar, V. R., Srinivas, K. and Suryanarayana, S. V., Appl. Phys. Lett. 76, 2764 (2000).Google Scholar
6. Wang, Y. P., Zhou, L., Zhang, M. F., Chen, X. Y., Liu, J. M. and Liu, Z. G., Appl. Phys. Lett. 84, 1731 (2004).Google Scholar
7. Pradhan, A. K., Zhang, K., Hunter, D., Dadson, J. B., Loutts, G. B., Bhattacharya, P., Katiyar, R., Zhang, J. and Sellmyer, D. J., J. Appl. Phys. 97, 093903 (2005).Google Scholar
8. Ederer, C. and Spaldin, N. A., Phys. Rev. B 71, 060401 (2005).Google Scholar
9. Sosnowska, I., Peterlin-Neumaier, T. and Steichele, E., J. Phys. C 15, 4835 (1982).Google Scholar
10. Ruette, B., Zvyagin, S., Pyatakov, A. P., Bush, A. A., Li, J. F., Belotelov, V. I., Zvezdin, A. K. and Viehland, D., Phys. Rev. B 69, 064114 (2004).Google Scholar
11. Popov, Yu. F., Kadomtseva, A. M., Drotov, S. S., Belov, D. V., Worob'ev, G. P., Makhov, P. N. and Zvezdin, A. K., Low Temp. Phys. 27, 478 (2001).Google Scholar
12. Sosnowska, I., Schäfer, W., Kockelmann, W., Andersen, K. H. and Troyanchuk, I. O., Appl. Phys. A: Mater. Sci. Process. 74, 1040 (2002).Google Scholar
13. Zalesskii, A. V., Frolov, A. A., Khimich, T. A. and Bush, A. A., Phys. Solid State 45, 141 (2003).Google Scholar
14. Zalesskii, A. V., Zvezdin, A. K., Frolov, A. A. and Bush, A. A., JETP Lett. 71, 465 (2000).Google Scholar
15. Wang, J., Neaton, J. B., Zheng, H., Nagarajan, V., Ogale, S. B., Liu, B., Viehland, D., Vaithyanathan, V., Schlom, D. G., Waghmare, U. V., Spaldin, N. A., Rabe, K. M., Wuttig, M. and Ramesh, R., Science 299, 1719 (2003).Google Scholar
16. Bai, F., Wang, J., Wuttig, M., Li, J., Wang, N., Pyatakov, A. P., Zvezdin, A. K., Cross, L. E. and Viehland, D., Appl. Phys. Lett. 86, 032511 (2005).Google Scholar
17. Soon, H. P., Xue, J. M. and Wang, J., J. Appl. Phys. 95, 4981 (2004).Google Scholar
18. Yu, T., Shen, Z. X., Xue, J. M. and Wang, J., J. Appl. Phys. 93, 3470 (2003).Google Scholar
19. Santos, I. A., Grande, H. L. C., Freitas, V. F., Medeiros, S. N. de, Paesano, A. Jr , Cotica, L. F. and Radovanovic, E., Journal of Non-Crystalline Solids 352, 37213724 (2006).Google Scholar