Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T01:41:50.177Z Has data issue: false hasContentIssue false

Investigation of DNA Decorated Carbon Nanotube Chemical Sensors

Published online by Cambridge University Press:  01 February 2011

Michelle Chen
Affiliation:
chenm@seas.upenn.edu, University of Pennsylvania, Materials Science and Engineering, 3231 Walnut Street, Philadelphia, PA, 19104, United States
S. M. Khamis
Affiliation:
smk@sas.upenn.edu, University of Pennsylvania, Physics, Philadelphia, PA, 19104, United States
R. R. Johnson
Affiliation:
robertjo@sas.upenn.edu, University of Pennsylvania, Physics, Philadelphia, PA, 19104, United States
C. Staii
Affiliation:
cstaii@physics.upenn.edu, University of Pennsylvania, Physics, Philadelphia, PA, 19104, United States
M. L. Klein
Affiliation:
klein@sas.upenn.edu, University of Pennsylvania, Chemistry, Philadelphia, PA, 19104, United States
J. E. Fischer
Affiliation:
fischer@seas.upenn.edu, University of Pennsylvania, Materials Science and Engineering, Philadelphia, PA, 19104, United States
A. T. Johnson
Affiliation:
cjohson@sas.upenn.edu, University of Pennsylvania, Physics, Philadelphia, PA, 19104, United States
Get access

Abstract

We demonstrate a versatile class of nanoscale sensors based on single-stranded DNA (ss-DNA) as the chemical recognition site and single-walled carbon nanotube field effect transistors (swCN-FETs) as the electronic readout component. Coating swCN-FETs with ss-DNA causes a current change when exposed to gaseous analytes, whereas bare swCN-FETs show no detectable change. The responses differ in sign and magnitude depending both on the type of gaseous analyte and the sequence of DNA. Our results suggest that the conformation of ss-DNA on swCN-FET plays a role in determining the sensor response to gaseous analytes. The conformation depends not only on the base content of the oligomer, but also on the specific arrangement of the bases in the ss-DNA. We compare our results with the molecular dynamic simulations for understanding of the sensing mechanisms. SsDNA/swCN-FETs possess rapid recovery and self-regenerating ability, which could lead to realization of large arrays for sensitive electronic olfaction and disease diagnosis.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chopra, S., McGuire, K., Gothard, N. et al., Appl. Phys. Lett. 83, 2280 (2003).Google Scholar
2. Li, J., Lu, Y. J., ye, Q., Cinke, M., Han, J., and Meyyappan, M., Nano Lett. 3, 929 (2003).Google Scholar
3. Novak, J. P., Snow, E. S., Houser, E. J. et al., Appl. Phys. Lett. 83, 4026 (2003).10.1063/1.1626265Google Scholar
4. Valentini, L., Armentano, I., Kenny, J. M. et al., Appl. Phys. Lett. 82, 961 (2003).10.1063/1.1545166Google Scholar
5. Bradley, K., Gabriel, J. C. P., Star, A., and Gruner, G., Appl. Phys. Lett. 83, 3821 (2003).10.1063/1.1619222Google Scholar
6. Snow, E. S., Perkin, F. K., Houser, E. J. et al., Science 307, 1942 (2005).Google Scholar
7. Wong, S. S., Joselevich, E., Woolley, A. T. et al., Nature 394, 52 (1998).Google Scholar
8. Williams, K. A., Veenhuizen, P. T. M., de la Torre, B. G. et al., Nature 420, 761 (2003).Google Scholar
9. Chen, R. J., Bangsaruntip, S. et al., Proc. Natl. Acad. Sci. U.S.A. 100, 4984 (2003).Google Scholar
10. Barone, P. W., Baik, S., Heller, D. A., and Strano, M. S., Nat. Mater. 4, 86 (2005).Google Scholar
11. Staii, C., Chen, M., Gelperin, A., and Johnson, A.T., Nano Lett. 5, 1774 (2005).Google Scholar
12. Hahm, J. -i., and Lieber, C. M., Nano Lett. 4, 51 (2004).Google Scholar
13. Wang, W. U., Chen, C., Lin, K. ñh. et al., Proc. Natl. Acad. Sci. U.S.A. 102, 3208 (2005).10.1073/pnas.0406368102Google Scholar
14. Zhang, D., Liu, Z., Li, C. et al., Nano Lett. 4, 1919 (2004).Google Scholar
15. Pengfei, Q. F., Vermesh, O., Grecu, M. et al., Nano Lett. 3, 347 (2003).Google Scholar
16. Patel, D. J., Suri, A. K., Jiang, F. et al., J. Mol. Biol. 272, 645 (1997).Google Scholar
17. Breaker, R. R., Nature 432, 838 (2004).Google Scholar
18. White, J. E., and Kauer, J. S., US Patent 2004/0101851 (2004).Google Scholar
19. White, J. E. et al., Assoc. Chemo. Sciences, XXVI Annual meeting Abstracts 32 (2004).Google Scholar
20. Zheng, M., Jagota, A., Semke, E. D. et al., Nature Materials 2, 338 (2003).Google Scholar
21. Hopkins, A. R., and Lewis, N. S., Anal. Chem. 73, 884 (2001).Google Scholar