Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T14:06:18.279Z Has data issue: false hasContentIssue false

Investigation of Charge Trapping at Grain Boundaries in Polycrystalline and Multicrystalline Silicon Solar Cells

Published online by Cambridge University Press:  01 February 2011

Jennifer T. Heath
Affiliation:
jheath@linfield.edu, Linfield College, Physics, McMinnville, Oregon, United States
Chun-Sheng Jiang
Affiliation:
chun.sheng.jiang@nrel.gov, National Renewable Energy Laboratory, Golden, Colorado, United States
Helio Moutinho
Affiliation:
helio.moutinho@nrel.gov, United States
Mowafak Al-Jassim
Affiliation:
mowafak.aljassim@nrel.gov, United States
Get access

Abstract

Scanning capacitance microscopy (SCM) often shows a change in contrast at grain boundaries [1-3]. The origins of this contrast and the efficacy of SCM as a tool to identify band bending at grain boundaries in pc-Si and mc-Si are discussed. Contrast at these grain boundaries could be influenced by different oxide growth rates or by defect states at the oxide interface. In order to determine the influence of such mechanisms on the SCM signal, such effects must be modeled; we show that a simple one-dimensional model agrees well with more detailed models of SCM signal strength and indicates, for example, that very small changes in oxide thickness measurably affect the SCM signal. In our experimental data, the uniformity and quality of the oxide layer are confirmed, and increased contrast consistent with depletion regions is still observed at higher order grain boundaries as identified by electron backscattering diffraction, including 9 and 27a. Scans of the SCM signal as a function of dc probe voltage allow such regions to be more quantitatively investigated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Visoly-Fisher, I., Cohen, S. R., and Cahen, D., Applied Physics Letters 82, 556 (2003)10.1063/1.1542926Google Scholar
2 Matsuki, N., Ishihara, R., Baiano, A., Beenakker, K., Applied Physics Letters 93, 062102 (2008).10.1063/1.2968663Google Scholar
3 Jiang, C.-S., Moutinho, H.R., To, B., Dippo, P., Romero, M.J., and Al-Jassim, M.M., Mater. Res. Soc. Symp Proc. 106, 1066 (2008).Google Scholar
4 Grovenor, C. R. M., Journal of Physics C: Solid State Physics 18, 4079 (1985).10.1088/0022-3719/18/21/008Google Scholar
5 Holt, D. B. and Yacobi, B. G., Extended Defects in Semiconductors (Cambridge University Press, Cambridge, 2007) pp. 534572.10.1017/CBO9780511534850Google Scholar
6 Lu, J., Wagener, M., Rozgonyi, G., Rand, J., and Jonczyk, R., Journal of Applied Physics 94, 140 (2003).10.1063/1.1578699Google Scholar
7 Beaucarne, G., Bourdais, S., Slaoui, A., Poortmans, J., Proc. 28th IEEE PVSC, Alaska, 2000, p.128.Google Scholar
8 Metzger, W.K., Gloeckler, M., Journal of Applied Physics 98, 063701 (2005).10.1063/1.2042530Google Scholar
9 Zavyalov, V. V., McMurray, J. S., Williams, C. C., Journal of Applied Physics 85, 7774 (1999).10.1063/1.370584Google Scholar
10 Giannazzo, F., Goghero, D., Raineri, V., Journal of Vacuum Science and Technology B 22, 2391 (2004).10.1116/1.1795252Google Scholar
11 Law, J. J. M., Yu, E. T., Haskell, B. A., Fini, P. T., Nakamura, S., Speck, J. S., and DenBaars, S. P., Journal of Applied Physics 103, 014305 (2008).10.1063/1.2828161Google Scholar
12 Vines, L., Monakhov, E., Svensson, B. G., Jensen, J., Hallën, A., and Kuznetsov, A. Y., Physical Review B 73, 085312 (2006).10.1103/PhysRevB.73.085312Google Scholar
13 Sze, S. M., Semiconductor Devices: Physics and Technology (Wiley, New York, 1985) pp 197200.Google Scholar
14 Nicollian, E. H. and Brews, J. R., MOS Physics and Technology (Wiley, New York, 1982).Google Scholar
15 Teplin, C. W., Branz, H. M., Jones, K. M., Romero, M. J., Stradins, P., and Gall, S., Mat. Res. Soc. Symp. Proc. 989, 133 (2006).Google Scholar
16 Wong, K. M. and Chim, W. K., Applied Physics Letters 88, 083510 (2006).10.1063/1.2177352Google Scholar
17 Goghero, D., Raineri, V., Giannazzo, F., Applied Physics Letters 81, 1824 (2002).10.1063/1.1499228Google Scholar
18 Murray, J., Germanicus, R., Doukkali, A., Martin, P., Doenges, B., and Descamps, P., Journal of Vacuum Science and Technology B 25, 1340 (2007).10.1116/1.2759218Google Scholar
19 Brezna, W., Fischer, M., Wanzenboeck, H. D., Bertagnolli, E., Smoliner, J., Applied Physics Letters 88, 122116 (2006).10.1063/1.2189030Google Scholar