Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T23:27:14.278Z Has data issue: false hasContentIssue false

Intrinsic Mobility Limits of a Two-Dimensional Electron Gas in AlGaN/GaN Heterostructures

Published online by Cambridge University Press:  10 February 2011

W. Walukiewicz
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, CA 94720
L. Hsu
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, CA 94720 Dept. of Physics, University of California-Berkeley, Berkeley, CA 94720
J. M. Redwing
Affiliation:
Advanced Technology Materials Inc., 7 Commerce Dr., Danbury, CT 06810
Get access

Abstract

We present the results of a theoretical study of the 2D electron gas mobility at a AlxGa1−xN/GaN heterointerface. All standard mechanisms, including scattering by acoustic and optical phonons, and remote and background (residual) impurities have been included in our calculation of theoretical mobility limits in a AlxGa1−xN/GaN structure. Comparison of calculations with experimental mobilities obtained from high quality MOCVD grown Al0.15Ga0.85N/GaN heterostructures shows that the low temperature mobility in these samples is dominated by scattering from ionized impurities, with a smaller contribution from acoustic phonons.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Redwing, J. M., Tischler, M. A., Flynn, J. S., Elhamri, S., Ahoujja, M., Newrock, R. S., and Mitchel, W. C., Appl. Phys. Lett. 69, 963 (1996).Google Scholar
2. Asif Khan, M., Van Hove, J. M., Kuznia, J. N., and Olson, D. T., Appl. Phys. Lett. 58, 2408 (1991).Google Scholar
3. Asif Khan, M., Kuznia, J. N., Van Hove, J. M., Pan, N., and Carter, J., Appl. Phys. Lett. 60, 3027 (1992).Google Scholar
4. Asif Khan, M., Chen, Q., Sun, C. J., Shur, M., and Gelmont, B., Appl. Phys. Lett. 67, 1429 (1995).Google Scholar
5. Asif Khan, M., Bhattarai, A., Kuznia, J. N., and Olson, D. T., Appl. Phys. Lett. 63, 1214 (1993).Google Scholar
6. Asif Khan, M., Kuznia, J. N., Olson, D. T., Schaff, W. J., Burm, J. W., and Shur, M. S., Appl. Phys. Lett. 65, 1121 (1994).Google Scholar
7. Shur, M., Gelmont, B., Asif Khan, M., J. Elect. Mat. 25, 777 (1996).Google Scholar
8. Ando, T., Fowler, A. B., and Stern, F., Rev. Mod. Phys. 54, 437 (1982).Google Scholar
9. Ando, T., J. Phys. Soc. Jap. 51, 3893 (1982).Google Scholar
10. Stern, F. and Howard, W. E., Phys. Rev. 163, 816 (1967).Google Scholar
11. Walukiewicz, W., Ruda, H. E., Lagowski, J., and Gatos, H. C., Phys. Rev. B 30, 4571 (1994).Google Scholar