Published online by Cambridge University Press: 26 February 2011
Time-of-flight (TOF) experiments were performed to study the desorption of trans-l,2-dichlorocyclohexane molecules from molecular films condensed on a quartz-crystal microbalance at 77 K. The wavelength dependence of the desorption signal was investigated by resonant excitation of the internal vibrational mode of the molecule in the 10 μm region with a pulsed line-tunable TEA CO2 laser. The TOF temperatures showed the same spectral dependence as the optical absorption coefficient. The TOF distributions were narrower than Maxwellian distributions for multilayer desorption yields and approached Maxwellian distributions for submonolayer desorption yields. A saturation behavior was found at high laser intensities, indicating that the kinetic energy of the desorbing molecules is limited to a maximum value.