Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T02:35:52.407Z Has data issue: false hasContentIssue false

Interpretation of Knudsen Cell Experiments to determine the Instant Release Fraction in Spent Fuel Corrosion Scenarios by using a Mechanistic Approach: the Caesium Case

Published online by Cambridge University Press:  01 July 2014

Daniel Serrano-Purroy
Affiliation:
European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, D-76125 Karlsruhe, Germany
Laura Aldave de las Heras
Affiliation:
European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, D-76125 Karlsruhe, Germany
Jean-Paul Glatz
Affiliation:
European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, D-76125 Karlsruhe, Germany
Ondrej Benes
Affiliation:
European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, D-76125 Karlsruhe, Germany
Jean Yves Colle
Affiliation:
European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, D-76125 Karlsruhe, Germany
Rosa Sureda
Affiliation:
CTM Centre Tecnològic, Avda. Bases de Manresa 1, 08240 Barcelona, Spain
Ernesto González-Robles
Affiliation:
CTM Centre Tecnològic, Avda. Bases de Manresa 1, 08240 Barcelona, Spain
Joan de Pablo
Affiliation:
CTM Centre Tecnològic, Avda. Bases de Manresa 1, 08240 Barcelona, Spain
Ignasi Casas
Affiliation:
CTM Centre Tecnològic, Avda. Bases de Manresa 1, 08240 Barcelona, Spain
Marc Barrachin
Affiliation:
Institut de Radioprotection et de Sûreté Nucléaire (IRSN), B.P. 3, F-13115 St Paul lez-Durance, France
Roland Dubourg
Affiliation:
Institut de Radioprotection et de Sûreté Nucléaire (IRSN), B.P. 3, F-13115 St Paul lez-Durance, France
Aurora Martínez-Esparza
Affiliation:
ENRESA, C/Emilio Vargas 7, 28043 Madrid, Spain
Get access

Abstract

The Knudsen Effusion Mass Spectrometer (KEMS) and the mechanistic MFPR (Module for Fission Product Release) code are tools which seem particularly interesting to support studies of the Instant Release Fraction (IRF) of Cs from spent nuclear fuel in a final repository. With KEMS, the thermal release of 137Cs and 136Xe were analysed by annealing up to total vaporization (2500K) of high burn-up (60 GWd/tU) Spent Nuclear Fuel (SNF) samples. Powder samples from the centre of the fuel, without high burn-up structure, were used. To determine the IRF, samples were analysed before and after being submitted to corrosion experiments in bicarbonated aqueous media.

MFPR was applied to determine the localization of Cs and fission gases in the SNF at the end of irradiation; the results are compared and supported by dedicated thermodynamics calculations performed for equilibrium conditions at various temperatures and fuel oxygen potentials by the non-ideal thermodynamic MEPHISTA (Multiphase Equilibria in Fuels via Standard Thermodynamic Analysis) database. A possible mechanism for Cs release during thermal annealing is proposed, taking into account inter-granular release and Cs oxide vaporization, atomic diffusion, ternary oxide phase formation and bubble release.

Differences in KEMS release profiles before and after submitting the samples to aqueous corrosion are attributed to the IRF and to changes in the vaporisation mechanism because of differences in the oxygen potential (pO2). The IRF of Cs estimated from the KEMS spectra, consisting on the part located at the grain boundaries and in inter-granular bubbles, is not significantly different from that corresponding to the experimental results found using classical static leaching experiments.

New experimental campaigns are being designed to confirm our interpretation proposed after this first run.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Serrano-Purroy, D., Clarens, F., González-Robles, E., Glatz, J.P., Wegen, D.H., de Pablo, J., Casas, I., Giménez, J., Martínez-Esparza, A.. J. Nucl. Mat. 427 249258 (2012).10.1016/j.jnucmat.2012.04.036CrossRefGoogle Scholar
Serrano-Purroy, D., Casas, I., González-Robles, E., Glatz, J. P., Wegen, D.H., Clarens, F., Giménez, J., de Pablo, J., Martínez-Esparza, A..J. Nucl. Mat. 427 249258 (2012).10.1016/j.jnucmat.2012.04.036CrossRefGoogle Scholar
Serrano-Purroy, D., Rondinella, V.V., Wegen, D.H.. Characterisation of Irradiated MOX: Static leaching Report, NF-PRO Deliverable 1.4.10. ITU Technical Report JRC-ITU-TPW-2007/37.Google Scholar
González-Robles, E. Study of Radionuclide Release in commercials UO2 Spent Nuclear Fuels, Doctoral Thesis, Universitat Politécnica de Catalunya, 2011.Google Scholar
Rondinella, V.V. Serrano-Purroy, D.. Hiernaut, J.-P., Wegen, D., Papaioannou, D., Barker, M., “Grain boundary inventory and instant release fractions for SBR MOX”, Proc. International High-Level Radioactive Waste Management Conference, Sept 7–9, 2008, Las Vegas, USA, paper 195780, ANS CD-ROM.Google Scholar
de Pablo, J., Serrano-Purroy, D., Gonzalez-Robles, E., Clarens, F., Martínez-Esparza, A., Wegen, D.H., Casas, I., Christiansen, B., Glatz, J.-P., Giménez, J. in Scientific Basis for Nuclear Waste Management XXXVII, edited by Burakov, B.E. and Aloy, A.S., (Mater. Res. Soc. Symp. Proc. 1193, Warrendale, PA, 2009)pp. 613620..Google Scholar
Serrano-Purroy, D., Casas, I., González-Robles, E., Glatz, J.P., Wegen, D.H., Clarens, F., Giménez, J., de Pablo, J., Martínez-Esparza, A.. J. Nucl. Mat. 434, 451-460 (2013).10.1016/j.jnucmat.2011.03.020CrossRefGoogle Scholar
Hiernaut, J.P., Ronchi, C.. J. Nuc. Mat. 294, 3944 (2001).10.1016/S0022-3115(01)00469-XCrossRefGoogle Scholar
Hiernaut, J.P., Colle, J.Y., Pflieger-Cuvelier, R., Jonnet, J., Somers, J., Ronchi, C.. J. Nucl. Mat. 344, 246253 (2005).10.1016/j.jnucmat.2005.04.050CrossRefGoogle Scholar
Colle, J.Y., Hiernaut, J.P., Papaioannou, D., Ronchi, C., Sasahara, A.. J. Nucl. Mat. 348, 229242(2006).10.1016/j.jnucmat.2005.09.024CrossRefGoogle Scholar
Hiernaut, J.P., Wiss, T., Papaioannou, D., Konings, R.J.M., Rondinella, V.V..J. Nucl. Mat. 372, 215225 (2008).10.1016/j.jnucmat.2007.03.174CrossRefGoogle Scholar
Veshchunov, M.S, Ozrin, V.D., Shestak, V.E., Tarasov, V.I., Dubourg, R., Nicaise, G., Nucl. Eng. and Des. 236, 179200 (2006).10.1016/j.nucengdes.2005.08.006CrossRefGoogle Scholar
Veshchunov, M.S., Dubourg, R., Ozrin, V.D., Shestak, V.E., Tarasov, V.I., J. Nucl. Mat. 362, 327335 (2007).10.1016/j.jnucmat.2007.01.081CrossRefGoogle Scholar
Colle, J.-Y., Maugeri, E. A., Thiriet, C., Talip, Z., Capone, F., Hiernaut, J.-P., Konings, R. J. M., Wiss, T., Colle, Jean-Yves, Maugeri, Emilio A., Thiriet, Catherine, Talip, Zeynep, Capone, Franco, Hiernaut, Jean-Pol, Konings, Rudy J. M., and Wiss, Thierry, Journal of nuclear science deans technology Accepted for publicationGoogle Scholar
Saunders, N., Miodownik, A.P., CALPHAD calculation of phase diagrams, Elsevier Science Ltd, Oxford (1998)Google Scholar