Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T15:11:08.486Z Has data issue: false hasContentIssue false

Interdiffusion of Bi and Sb in Superlattices Built from Blocks of Bi2Te3, Sb2Te3 and TiTe2

Published online by Cambridge University Press:  31 January 2011

Clay D. Mortensen
Affiliation:
clay.d.mortensen@intel.com, University of Oregon, Department of Chemistry and Materials Science Institute, Eugene, Oregon, United States
David Johnson
Affiliation:
davej@uoregon.edu, University of Oregon, 1253 University of Oregon, Eugene, Oregon, 97403-1253, United States
Get access

Abstract

The reaction kinetics of [(Ti-Te)]x[(Sb-Te)]y, [(Bi-Te)]x[(Sb-Te)]y, [(Ti-Te)]w[(Bi-Te)]x and [(Ti-Te)]w[(Bi-Te)]x[(Ti-Te)]y[(Sb-Te)]z precursors as a function of annealing temperature and time was probed using x-ray diffraction techniques to define the parameters required to form superlattice structures. [(TiTe2)1.36]x[Sb2Te3]y and [(TiTe2)1.36]x[Bi2Te3]y superlattices were observed to form while [(Bi-Te)]x[(Sb-Te)]y precursors yielded only Bi2-xSbxTe3 alloys. This behavior was correlated with the immiscibility/miscibility of the constituents of the targeted superlattices. For the three component system, Bi and Sb were observed to interdiffuse through the Ti-Te layer over the range of Ti-Te thicknesses explored, resulting in formation of (BixSb1-x)2Te3 alloys within the superlattice structure. When the Bi2Te3 and Sb2Te3 thicknesses were equal, symmetric [{(TiTe2)}1.36]w[(Bi0.5Sb0.5)2Te3]y superlattices were formed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Shen, J., Kirschner, J., Surf. Sci. 500, 300 (2002)10.1016/S0039-6028(01)01557-6Google Scholar
2 Cahill, D. G., Ford, W. K., Goodson, K. E., Mahan, G. D., Majumdar, A., Maris, H. J., Merlin, R., Phillpot, S. R., Journal of Applied Physics 93 (2), 793 (2003).Google Scholar
3 Venkatasubramanian, R., Siivola, E., Colpitts, T., O'Quinn, B., Nature, 413, 597 (2001).Google Scholar
4 Lee, H. N., Christen, H. M., Chisholm, M. F., Rouleau, C. M., Lowndes, D. H., Nature 433, 395 (2005).10.1038/nature03261Google Scholar
5 Nakhmanson, S. M., Rabe, K. M., Vanderbilt, D., Appl. Phys Phys. Lett. 87, 102906 (2005).10.1063/1.2042630Google Scholar
6 Landi, S. M., Tribuzy, C. V., Souza, P. L., Butendeich, R., Bittencourt, A. C., Marques, G. E., Phys. Rev. B: Condensed Matter and Materials Physics 67 (8), 085304/1-085304/10 (2003).10.1103/PhysRevB.67.085304Google Scholar
7 Hashemi, P., Gomez, L., Hoyt, J. L., Robertson, M. D., Canonico, M., Appl. Phys. Lett. 91 (8), 083109/1-083109/3 (2007).10.1063/1.2772775Google Scholar
8 Seravalli, L., Frigeri, P., Minelli, M., Allegri, P., Avanzini, V., Franchi, S., Appl. Phys. Lett. 87 (6), 063101/1-063101/3 (2005).Google Scholar
9 Norman, A. G., Seong, T. Y., Ferfuson, I. T., Booker, G. R., Joyce, B. A., Semicond. Sci. technol. 8, S9 (1993).Google Scholar
10 Takahasi, M., Mizuki, J., J. Cryst. Growth 275, 2201 (2005).10.1016/j.jcrysgro.2004.11.241Google Scholar
11 Harris, F. R., Standridge, S., Johnson, D. C., J Am Chem Soc, 127, 7843 (2005).Google Scholar
12 Harris, F. R., Standridge, S., Feik, C., Johnson, D. C., Angewandte Chemie Int. Ed. 42(43), 5296 (2003).10.1002/anie.200351724Google Scholar
13 Donovan, J. J., Tingle, T. N., J. Microscopy, 2, 1 (1996).Google Scholar
14 Pouchou, J. L. and Pichoir, F., Scanning 12, 212 (1990).Google Scholar
15 Pouchou, J. L., Pichoir, F., and Boivin, D., Microbeam Analysis, San Francisco Press: San Francisco, 120 (1990).Google Scholar