Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-28T23:53:05.611Z Has data issue: false hasContentIssue false

Interconnects and Contacts for VLSI Applications

Published online by Cambridge University Press:  26 February 2011

A. K. Sinha*
Affiliation:
AT&T Bell Laboratories, 555 Union Boulevard, Allentown, Pa. 18103
Get access

Abstract

The power of VLSI circuits is, to a large measure, derived through an extensive network of fine-line metalization interconnects used to wire up various components on the chip. For example, the 1Mb DRAM utilizes three levels of conductors to interconnect over one million each of transistors and capacitors on a chip. The combination of larger chip dimensions and finer scaling generates several technology concerns that must be addressed by a variety of measures, including an optimum choice of metalization processes. These concerns are related to parasitics, defect density and generic reliability.

This talk will review trends in materials/processes to control RC time constants, series resistances, fine-line metal defects during pattern transfer, control of topography-related defects and generic reliability related issues such as contact electromigration and ∝-particle sensitivities.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) Kirsch, H. C., Clemons, D. G., Davar, S., Harman, J. E., Holder, C. H., Hunsicker, W. F., Procyk, F. J., Stefany, J. H. and Yaney, D. S., ISSCC Digest, p. 256 (1985).Google Scholar
2) Sinha, A. K., Cooper, J. A. Jr and Levinstein, H. J., IEEE Electron Device Letters, EDL3, 90 (1982).Google Scholar
3) Murarka, S. P., Fraser, D. B., Sinha, A. K. and Levinstein, H. J., IEEE Trans. Electron Devices, ED 27, 1409 (1980).Google Scholar
4) Okumura, K. and Moriya, T. in VLSI Science and Technology/1985, edited by Bullin, W. M. and Broydo, S., Electrochemial Society, Pennington, NJ, p. 163.Google Scholar
5) Ting, C. Y., IEDM Technical Digest, IEEE, p. 110 (1984).Google Scholar
6) Griffing, B. F. and West, P. R., IEEE Electron Device Letters, EDL4, 14 (1983).Google Scholar
7) Green, M. L. and Levy, R. A., J. Electrochemical Society, 132, 1243 (1985).Google Scholar
8) Broadbent, E. J. and Ramiller, C. J., J. Electrochemical Society, 131, 1427 (1984).Google Scholar
9) Sinha, A. K. and Sheng, T. T., Thin Solid Films, 48, 117 (1978).Google Scholar
10) Yue, J. T., Funsten, W. P. and Taylor, R. V., Proc IRPS, IEEE, p. 126 (1985).Google Scholar
11) Klema, J., Pyle, R., and Pomangue, E., Proc IRPS, IEEE, p. 1 (1984).Google Scholar
12) Gargini, P. A., Tseng, C. and Woods, M. H., Proc IRPS, IEEE, p. 66 (1982).Google Scholar
13) Vaidya, S. and Sinha, A. K., Proc IRPS, IEEE, p. 50 (1982).Google Scholar
14) Vaidya, S., Schutz, R. J. and Sinha, A. K., J. Appl. Phys., 55, 3514 (1984).Google Scholar
15) Vaidya, S., Fraser, D. B. and Sinha, A. K., Proc IRPS, IEEE, p. 165 (1980).Google Scholar
16) Ho, P. S. in VLSI Science and Technology/1985, edited by Bullis, W. M. and Broydo, S., The Electrochemical Society, Pennington, NJ, p. 146 (1985).Google Scholar
17) Turner, T. and Wendel, K., Proc IRPS, IEEE, p. 142 (1985).Google Scholar
18) Woods, M. H. and Euzent, B. L., IEDM Tech. Digest, IEEE, p. 50 (1984).Google Scholar