Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T13:25:23.939Z Has data issue: false hasContentIssue false

Integration of a Quantum Well Laser with AlGaAs/GaAs-HEMT Electronics

Published online by Cambridge University Press:  22 February 2011

W. Bronner
Affiliation:
Fraunhofer-Institut ffir Angewandte Festkörperphysik, Tullastr.72, W-7800 Freiburg, Germany
J. Hornung
Affiliation:
Fraunhofer-Institut ffir Angewandte Festkörperphysik, Tullastr.72, W-7800 Freiburg, Germany
K. Köhler
Affiliation:
Fraunhofer-Institut ffir Angewandte Festkörperphysik, Tullastr.72, W-7800 Freiburg, Germany
E. Olander
Affiliation:
Fraunhofer-Institut ffir Angewandte Festkörperphysik, Tullastr.72, W-7800 Freiburg, Germany
Z.-G. Wang
Affiliation:
Fraunhofer-Institut ffir Angewandte Festkörperphysik, Tullastr.72, W-7800 Freiburg, Germany
Get access

Abstract

In this presentation the various technology steps for the monolithic integration of GaAs quantum well lasers with Double Pulse Doped AlGaAs/GaAs/AlGaAs Quantum Well (DPDQW) E/D HEMT electronics on a single substrate in one process run are described. All layers are grown by molecular beam epitaxy. The laser structure, consisting of three 74 Å GaAs quantum wells between two AlGaAs cladding layers, are grown on top of the electronic structure. The laser mesas and contact areas are defined by a combined wet and dry etch process. Apart from the transistor gates which are exposed by electron beam lithography, all lithography steps are performed using contact printing. A two layer metallization is used to interconnect the devices whereby air-bridges are used to connect the laser mesas to the electronics. First results showed laser action of laser diodes of area 3 x 300 μm2 at a threshold current of less than 60 mA, as well as the operation of different electronic devices on wafers which have been processed in this way. These include a laser diode driver, and an optoelectronic receiver with a MSM photo diode, both devices operating at a data rate of 5 Gbit/sec. These results indicate that the process sequence described is suitable for the integration of laser diodes and HEMT electronics.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Nowotny, U., Lang, M., Berroth, M., Hurm, V., Hulsmann, A., Kaufel, G., Köhler, K., Raynor, B., and Schneider, Jo., Microelectr. Engineering 15, 323 (1991).Google Scholar
[2] Wang, Z. G., Berroth, M., Nowotny, U., Gotzeina, W., Hofmann, P., Hülsmann, A., Kaufel, G., Köhler, K., Raynor, B., and Schneider, J., Electron. Lett. 28, 222 (1992).Google Scholar
[3] Wang, Z. G., Nowotny, U., Berroth, M., Bronner, W., Hofmann, P., Hülsmann, A., Kölhler, K., Raynor, B., Electron. Lett. 28, 1724 (1992).Google Scholar
[4] Ralston, J. D., Gallagher, D. F. G., Tasker, P. J., Zappe, H. P., Esquivias, I., and Fleissner, J., Electron. Lett. 27, 1720 (1991).Google Scholar
[5] Hurm, V., Ludwig, M., Rosenzweig, J., Benz, W., Berroth, M., Bosch, R., Bronner, W., Hülsmann, A., Köhler, K., Raynor, B., and Schneider, J., Electron. Lett. 29, 9 (1993).Google Scholar
[6] Lang, M., Nowotny, U., and Berroth, M., Electron. Lett. 27, 459 (1991).Google Scholar
[7] Köhler, K., Ganser, P., Bachem, K. H., Maier, M., Hornung, J., and Hülsmann, A., Inst. Phys. Conf. Ser. 112, 521 (1990).Google Scholar
[8] Hülsmann, A., Kaufel, G., Köhler, K., Raynor, B., Schneider, J., and Jakobus, T., Jpn. J. Appl. Phys. 29, 2317 (1990).Google Scholar