Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T13:44:30.567Z Has data issue: false hasContentIssue false

In-Situ Raman Characterization of SOFC Anodes

Published online by Cambridge University Press:  10 May 2012

Robert C. Maher
Affiliation:
Department of Physics, Imperial College London, South Kensington, London SW6 2AZ UK.
Gregory Offer
Affiliation:
Department of Earth Science and Engineering, Imperial College London, South Kensington, London SW6 2AZ, UK.
Nigel P. Brandon
Affiliation:
Department of Earth Science and Engineering, Imperial College London, South Kensington, London SW6 2AZ, UK.
Lesley F. Cohen
Affiliation:
Department of Physics, Imperial College London, South Kensington, London SW6 2AZ UK.
Get access

Abstract

Solid oxide fuel cells (SOFCs) have many advantages when compared to other fuel cell technologies, particularly for distributed stationary applications. As a consequence they are becoming ever more economically competitive with incumbent energy solutions. However, as with all technologies, improvements in durability, efficiency and cost is required before they become feasible alternatives. Such improvements are enabled through improved understanding of the critical material interactions occurring during operation. Raman spectroscopy is a noninvasive and non-destructive optical characterization tool which is ideally suited to the study of these critical chemical processes occurring within operational SOFCs. In this paper we will discuss advantages of using Raman characterization for understanding these important chemical processes occurring within SOFCs. We will present the specific examples of the type of measurement possible and discuss the direction of future research.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Singhal, S. and Kendall, K., High-temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications. 1st ed.Google Scholar
2. Brett, D.J.L., Atkinson, A., Brandon, N.P., and Skinner, S.J., Chemical Society Reviews 37(8), 15681578, (2008).Google Scholar
3. Sarantaridis, D. and Atkinson, A., Fuel Cells 7(3), 246258, (2007).Google Scholar
4. Atkinson, A., Barnett, S., Gorte, R.J., Irvine, J.T.S., Mcevoy, A.J., Mogensen, M., Singhal, S.C., and Vohs, J., Nature Materials 3(1), 1727, (2004).Google Scholar
5. Brett, D.J.L., Kucernak, A.R., Aguiar, P., Atkins, S.C., Brandon, N.P., Clague, R., Cohen, L.F., Hinds, G., Kalyvas, C., Offer, G.J., Ladewig, B., Maher, R., Marquis, A., Shearing, P., Vasileiadis, N., and Vesovic, V., Chemphyschem 11(13), 27142731, (2010).Google Scholar
6. Shearing, P.R., Brett, D.J.L., and Brandon, N.P., International Materials Reviews 55(6), 347363, (2010).Google Scholar
7. Ferraro, J.R., Nakamoto, K., and Brown, C.W., Introductory Raman spectroscopy. 2nd ed. 2003, Amsterdam ; Boston: Academic Press. xiii, 434 p.Google Scholar
8. Maher, R.C. and Cohen, L.F., Journal of Physical Chemistry A 112(7), 14971501, (2008).Google Scholar
9. Luo, M.F., Guo, M., Pu, Z.Y., Bi, Q.Y., and Lu, J.Q., Chemical Journal of Chinese Universities-Chinese 30(8), 16451650, (2009).Google Scholar
10. Zeng, Z. and Natesan, K., Solid State Ionics 167(1-2), 916, (2004).Google Scholar
11. Yoshinaga, M., Kishimoto, H., Yamaji, K., Xiong, Y.P., Brito, M.E., Horita, T., and Yokokawa, H., Solid State Ionics 192(1), 571575, (2011).Google Scholar
12. Rasmussen, J.F.B. and Hagen, A., Journal of Power Sources 191(2), 534541, (2009).Google Scholar
13. Pomfret, M.B., Owrutsky, J.C., and Walker, R.A., Annual Review of Analytical Chemistry, Vol 3 3, 151174, (2010).Google Scholar
14. Liu, M.L., Cheng, Z., and Abernathy, H., Journal of Physical Chemistry C 111(49), 1799718000, (2007).Google Scholar
15. Liu, M.L. and Cheng, Z., Solid State Ionics 178(13-14), 925935, (2007).Google Scholar
16. Pomfret, M.B., Owrutsky, J.C., and Walker, R.A., Analytical Chemistry 79(6), 23672372, (2007).Google Scholar
17. Walker, R.A., Pomfret, M.B., and Owrutsky, J.C., Analytical Chemistry 79(6), 23672372, (2007).Google Scholar
18. Walker, R.A., Pomfret, M.B., Marda, J., Jackson, G.S., Eichhorn, B.W., and Dean, A.M., Journal of Physical Chemistry C 112(13), 52325240, (2008).Google Scholar
19. Walker, R.A., Eigenbrodt, B.C., Pomfret, M.B., Steinhurst, D.A., and , J.C Journal of Physical Chemistry C 115(6), 28952903, (2011).Google Scholar
20. Abernathy, H.W., Koep, E., Compson, C., Cheng, Z., and Liu, M.L., Journal of Physical Chemistry C 112(34), 1329913303, (2008).Google Scholar
21. Walker, R.A. and Eigenbrodt, B.C., Analytical Methods 3(7), 14781484, (2011).Google Scholar
22. Brightman, E., Maher, R.C., Offer, G.J., Heck, C., Cohen, L.F., and Brandon, N.P., to be submitted to Review of Scientific Instrumentation,Google Scholar
23. Mcbride, J.R., Hass, K.C., Poindexter, B.D., and Weber, W.H., Journal of Applied Physics 76(4), 24352441, (1994).Google Scholar
24. Mineshige, A., Taji, T., Muroi, Y., Kobune, M., Fujii, S., Nishi, N., Inaba, M., and Ogumi, Z., Solid State Ionics 135(1-4), 481485, (2000).Google Scholar
25. Mineshige, A., Yasui, T., Ohmura, N., Kobune, M., Fujii, S., Inaba, M., and Ogumi, Z., Solid State Ionics 152, 493498, (2002).Google Scholar
26. Tuinstra, F. and Koenig, J.L., Journal of Chemical Physics 53(3), 1126-&, (1970).Google Scholar
27. Ferrari, A.C. and Robertson, J., Physical Review B 61(20), 1409514107, (2000).Google Scholar