Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T13:56:44.607Z Has data issue: false hasContentIssue false

In-Situ Observation of Chemical Vapor Deposition of Thin Sige Films by Optical Reflection Interferometry

Published online by Cambridge University Press:  15 February 2011

G. Ritter
Affiliation:
Institute of Semiconductor Physics, P.O. Box 409, D-15204 Frankfurt (Oder), Germany
B. Tillack
Affiliation:
Institute of Semiconductor Physics, P.O. Box 409, D-15204 Frankfurt (Oder), Germany
M. Weidner
Affiliation:
Institute of Semiconductor Physics, P.O. Box 409, D-15204 Frankfurt (Oder), Germany
F. G. Böbel
Affiliation:
Fraunhofer Institute US, Am Weichselgarten 3, D–91058 Erlangen, Germany
B. Hertel
Affiliation:
Fraunhofer Institute US, Am Weichselgarten 3, D–91058 Erlangen, Germany
Get access

Abstract

Chemical Vapor Deposition of Si1-x Gex – films on Si (100) and of polycrystalline Si1-x Gex, layers on SiO2 – coated substrates have been performed at a pressure of 200 Pa in the temperature range of 500°C – 800°C, correspondingly. To observe the growth process and to characterize the growing thin films at deposition conditions an optical reflection interferometer (PYRITIERS) has been used. Comparing the data obtained at growth temperature with ex- situ measurements by spectroscopic ellipsometry the temperature dependence of optical constants of SiGe films have been evaluated. The reflectivity measurements during the deposition process allow to study the quality of the heteroepitaxial film, even in the initial stage of epitaxial growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Pickering, C., Carline, R. T., Robbins, D. J., Leong, W. Y., Gray, D. E., and Greef, R., Thin Solid Films, 223 (1993) 126.Google Scholar
[2] Jellison, G. E. Jr., Haynes, T. E., and Burke, H. H., to be publ. in Optical Materials.Google Scholar
[3] Pickering, C., and Carline, R. T., J. Appl. Phys. 75 (9) (1994) 4642.Google Scholar
[4] Vuye, G., Fisson, S., Van, V. Nguyen, Wang, Y., Rivory, J., and Abeles', F., Thin Solid Films 233 (1993) 166.Google Scholar
[5] Weidner, M., Zaumseil, P., and Eichler, M., Phys. Stat. Sol. (a) 136 (1993) 131.Google Scholar
[6] Patel, P. M., Almond, D. P., Reiter, H., Appl. Phys. B 43 (1987) 9.Google Scholar
[7] Boebel, F. G., and Möller, H., IEEE Transactions on Semiconductor Manufacturing 6(1993) 2.Google Scholar
[8] Grothe, H., and Boebel, F. G., J. Cryst. Growth 127 (1993) 1010.Google Scholar
[9] Böbel, F. G., Möller, H., Wowchak, A., Hertel, B., Hove, J. Van, Chow, L. A., and Chow, P. P, J. Vac. Sci. Technol. B 12 (2) (1994) 1207.Google Scholar
[10] Ritter, G., Tillack, B., Weidner, M., Zaumseil, P., Böbel, F. G., Hertel, B., Möller, H., in the press of J. Cryst. Growth.Google Scholar
[11] Dutartre, D., Warren, P., Berbezier, I.,and Perret, P., Thin Solid Films 222 (1992) 52.Google Scholar
[12] Banisch, R., Ritter, G., Tillack, B., to be publ. in J. Appl. Phys.Google Scholar