Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T13:46:33.727Z Has data issue: false hasContentIssue false

Influence of the Electron Blocking Layer on the Performance of Multilayer White Organic Light-Emitting Diodes

Published online by Cambridge University Press:  06 March 2012

Caroline Weichsel
Affiliation:
Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Straße 1, 01069 Dresden, Germany
Sebastian Reineke
Affiliation:
Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Straße 1, 01069 Dresden, Germany
Björn Lüssem
Affiliation:
Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Straße 1, 01069 Dresden, Germany
Karl Leo
Affiliation:
Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Straße 1, 01069 Dresden, Germany
Get access

Abstract

The effect of the electron blocking layer on the performance of white organic light-emitting diodes is studied. A variation of the material influences not only the carrier transport, but also the light distribution from the different emitters. Highest external quantum efficiency is reached for the material with the worst electrical properties, while highest luminous efficacy is obtained for the material with the best transport characteristics.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Reineke, S., Lindner, F., Schwartz, G., Seidler, N., Walzer, K., Lüssem, B., and Leo, K., Nature 459, 234 (2009).Google Scholar
[2] Walzer, K., Maennig, B., Pfeiffer, M., and Leo, K., Chemical Reviews 107, 1233–71 (2007).Google Scholar
[3] Huang, J., Pfeiffer, M., Werner, A., Blochwitz, J., Leo, K., and Liu, S., Applied Physics Letters 80, 139 (2002).Google Scholar
[4] Park, Y. W., Kim, Y. M., Choi, J. H., Park, T. H., Jeong, J.-W., Choi, H. J., and Ju, B. K., IEEE Electron Device Letters 31, 452454 (2010).Google Scholar
[5] Seidler, N., Reineke, S., Walzer, K., Lüssem, B., Tomkeviciene, A., Grazulevicius, J. V., and Leo, K., Applied Physics Letters 96, 93304 (2010).Google Scholar
[6] Weichsel, C., Reineke, S., Lüssem, B., and Leo, K., Journal of Applied Physics, accepted Google Scholar
[7] He, G., Pfeiffer, M., Leo, K., Hofmann, M., Birnstock, J., Pudzich, R., and Salbeck, J., Applied Physics Letters 85, 3911 (2004).Google Scholar
[8] Yook, K. S., Jeon, S. O., Kim, O. Y., and Lee, J. Y., Electrochemical And Solid State Letters 13, J71 (2010).Google Scholar
[9] Ikai, M., Tokito, S., Sakamoto, Y., Suzuki, T., and Taga, Y., Applied Physics Letters 79, 156 (2001).Google Scholar
[10] Zheng, Y., Eom, S. H., Chopra, N., Lee, J. W., So, F., and Xue, J. G., Applied Physics Letters 92, 223301 (2008).Google Scholar
[11] van Gemmern, P., van Elsbergen, V., Grabowski, S. P., Boerner, H., Löbl, H.-P., Becker, H., Kalisch, H., Heuken, M., and Jansen, R. H., Journal of Applied Physics 100, 123707 (2006).Google Scholar