Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T14:25:05.587Z Has data issue: false hasContentIssue false

Influence of the Electrode Spacing on the Plasma Characteristics and Hydrogenated Amorphous Silicon Film Properties Grown in the DC Saddle Field PECVD System

Published online by Cambridge University Press:  28 June 2011

Keith R. Leong
Affiliation:
Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, M5S 3G4, Canada
Nazir P. Kherani
Affiliation:
Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, M5S 3G4, Canada
Stefan Zukotynski
Affiliation:
Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, M5S 3G4, Canada
Get access

Abstract

A new plasma deposition system was built with the capability of varying the electrode spacing in the DC Saddle Field plasma enhanced chemical vapor deposition system. An ion mass spectrometer was installed just below the substrate holder to sample the ion species travelling towards the substrate. Silane plasma and amorphous silicon film studies were conducted to shed light on the impinging ion species, ion energy distributions, and film properties with varying electrode spacing. The results indicate that decreasing the distance between the substrate and cathode leads to a reduction in the high energy ion bombardment.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Platz, R., Hof, C., Wieder, S., Rech, B., Fischer, D., Shah, A., Payne, A., and Wagner, S., Materials Research Society Symposium Proceedings, San Francisco, 1998, 507, pp. 565570.10.1557/PROC-507-565Google Scholar
2. Alpuim, P., Chu, V., and Conde, J. P., Journal of Applied Physics, 86, pp. 38123821 (1999).10.1063/1.371292Google Scholar
3. Soppe, W. J., Muffler, H. J., Biebericher, A. C., Devilee, C., Burgers, A. R., Poruba, A., Hodakova, L., and Vanecek, M., Proceedings of the twentieth European Photovoltaics Solar Energy Conference, Barcelona, Spain, (June 2005), pp. 16041607.Google Scholar
4. Kruzelecky, R. V., Zukotynski, S., Ukah, C. I., Gaspari, F., and Perz, J. M., Journal of Vacuum Science and Technology A, 7 (4), pp. 26322638 (1989).10.1116/1.575765Google Scholar
5. Weakliem, H. A., Estes, R. D., and Longeway, P. A., Journal of Vacuum Science and Technology A 5 (1), pp. 2936 (1987).10.1116/1.574133Google Scholar
6. Ross, R. C., Jaklik, J. Jr., Journal of Applied Physics, 55, pp. 37853794 (1984).10.1063/1.332935Google Scholar
7. Maemura, Y., Fujiyama, H., Takagi, T., Hayashi, R., Futako, W., Kondo, M., and Matsuda, A., Thin Solid Films 345, pp. 8084 (1999).10.1016/S0040-6090(99)00100-5Google Scholar
8. Ishihara, Shin-ichiro, Kitagawa, M., Hirao, T., and Wasa, K., Journal of Applied Physics 62, pp. 485491 (1987).10.1063/1.339771Google Scholar
9. Mataras, D., Cavadias, S., and Rapakoulias, D., Journal of Vacuum Science and Technology A 11, pp. 664671 (1993).10.1116/1.578788Google Scholar
10. Sagnes, E., Szurmak, J., Manage, D., and Zukotynski, S., Journal of Vacuum Science and Technology A 17 (3), pp. 713720 (1999).10.1116/1.581694Google Scholar
11. Bahardoust, B., Chutinan, A., Leong, K., Gougam, A. B., Yeghikyan, D., Kosteski, T., and Kherani, N. P., Zukotynski, S., Physica Status Solidi A, 207, pp. 539543 (2010).10.1002/pssa.200982803Google Scholar
12. Wong, J., Kherani, N. P., and Zukotynski, S., Journal of Applied Physics 101, pp. 013308 (2007).10.1063/1.2409566Google Scholar
13. Takai, M., Nishimoto, T., Kondo, M., and Matsuda, A., Applied Physics Letters 77, pp. 28282830 (2000).10.1063/1.1322373Google Scholar