Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T13:36:00.034Z Has data issue: false hasContentIssue false

Influence of Low Molecular Weight PDMS Chains in PDMS-based Non-Photolithography

Published online by Cambridge University Press:  01 February 2011

Jinook Kim
Affiliation:
ibis7777@lgphilips-lcd.com, LG.Philips LCD R & D center, 1 gr, 533, hogae-dong, dongan-gu, anyang-shi, gyongki-do, 431-080, Korea, Republic of
C. H. Lee
Affiliation:
ibis7777@lgphilips-lcd.com, LG.Philips LCD R&D Center, Anyang-shi, Gyongki-do, 431-080, Korea, Republic of
Mikyung Park
Affiliation:
ibis7777@lgphilips-lcd.com, LG.Philips LCD R&D Center, Anyang-shi, Gyongki-do, 431-080, Korea, Republic of
G. S. Chae
Affiliation:
ibis7777@lgphilips-lcd.com, LG.Philips LCD R&D Center, Anyang-shi, Gyongki-do, 431-080, Korea, Republic of
In-Jae Chung
Affiliation:
ibis7777@lgphilips-lcd.com, LG.Philips LCD R&D Center, Anyang-shi, Gyongki-do, 431-080, Korea, Republic of
Get access

Abstract

We describe that an elastomeric stamp of poly(dimethylsiloxane) (PDMS) can modify the surface energy of some surfaces when brought into conformal contact with the number of stamping. We focus on an increase of the hydrophobicity of the patterned surface due to diffusion of low molecular weight (LMW) silicone polymer chains. The transfer of PDMS to the surface during patterning is relevant to and calls for attention by those who are using this method in applications where control of the surface chemistry is of importance for the application.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wang, C. P., IEEE Trans. Comput. Packag. Manuf. Technol., A 18, 270 (1995).Google Scholar
2. Xia, Y., Whitesides, G. M., Angew. Chem. Int. Ed. 37, 550 (1998).Google Scholar
3. Lee, T.-W., Zaumseil, J., Kim, S. H., Hsu, J. W. P., Adv. Mater. 16, 2040 (2004).Google Scholar
4. Kim, J., Lee, J., Han, C. W., Lee, N. Y., and Chung, I., Appl. Phys. Lett. 82, 4238, (2003).Google Scholar
5. Clarson, S. J., Semlyen, J. A., Siloxane Polymers, Prentice Hall, Englewood Cliffs (NJ 1993).Google Scholar
6. Choi, J.-H, Kim, D., Yoo, P. J., Lee, H. H., Adv. Mater. 17, 166 (2005).Google Scholar
7. Glasmästar, K., Gold, J., Andersson, A.-S., Sutherland, D. S., Kasemo, B., Langmuir 19, 5475 (2003).Google Scholar
8.a) Hillborg, H., Gedde, U. W., Polymer, 39, 1991 (1998). b) H. Hillborg, U. W. Gedde, IEEE Trans. Diel. Electr. Insul. 6, 703 (1999).Google Scholar