Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T13:51:46.505Z Has data issue: false hasContentIssue false

Influence of LaNiO3 as an Electrode on the Properties of Ferroelectric Oxides

Published online by Cambridge University Press:  10 February 2011

R. Kalare
Affiliation:
Department of Electrical and Computer Engineering, University of South Alabama, Mobile, AL 36688
M. Vedawyas
Affiliation:
Department of Electrical and Computer Engineering, University of South Alabama, Mobile, AL 36688
A. Kumar
Affiliation:
Department of Mechanical Engineering and Center for Microelectronics Research, University of South Florida, Tampa, FL 33620, akumarl@eng.usf.edu
Get access

Abstract

An electrode plays an important role in realising a ferroelectric thin film as a potential memory device. We have investigated LaNiO3 (LNO) as a potential electrode material and evaluated the ferroelectric properties of oxide materials like strontium bismuth tantalate (SBT) and barium titanate(BT). We have successfully deposited epitaxial films of LNO on Pt coated Si(100) and LaAlO3 (LAO) substrates using the pulsed excimer laser deposition technique. We are able to grow high quality SBT and BT films on top of this LNO layer. The X-ray diffraction revealed the epitaxy of the LNO, SBT and BT films. The ferroelectric properties of SBTand BT were investigated using the RT66A ferroelectric tester.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Scott, J.F. and DeAraujo, C.A.P.; Science 246, 1400 (1989)Google Scholar
2 Kumar, A., Alam, M.R., Mangiaracina, A. and Shamasuzzoha, M.; J. Elec. Mater. 26, 1331 (1997)Google Scholar
3 Wu, C.M. and Wu, T. B.; Jpn. J. Appl. Phys. 36, 1164 (1997)Google Scholar
4 Nagraj, B., Sawhney, T., Perusse, S.; Appl. Phys. Lett. 74, 3194 (1999)Google Scholar
5 Lin, C.H., Yen, B.M., Kuo, H.C. and Chen, H., J. Mater. Res. 15, 115 (2000)Google Scholar
6 Lee, J. J., Thio, C.L. and Desu, S.B.; J. Appl. Phys. 78, 5073 (1995)Google Scholar
7 Ramesh, R., Gilchrist, H., Sands, T.; Appl. Phys. Lett. 63, 3592 (1993)Google Scholar
8 Foster, C. M., Bai, G.R., Csencsits, R., Vetrone, T. et al; J. Appl. Phys. 81, 2349 (1997)Google Scholar
9 Ichinose, H., Shiwa, Y. and Nagano, M.; Jpn. J. Appl. Phys. 33, 5903 (1994)Google Scholar
10 Rajeev, K.P, Shivashankar, G.V. and Raychaudhuri, A.K.; Solid State Commun. 79, 591 (1991)Google Scholar
11 Shyu, M.J., Hang, T.J. and Wu, T.B.; Mater. Lett. 23, 221 (1995)Google Scholar
12 Bae, C., Lee, J.K., Lu, S.H. and Jung, H.J.; J. Vac. Sci. Technol. A 17, 2957 (1999)Google Scholar
13 Yang, H. M., Luo, J.S. and Lin, W.T.; J. Mater. Res. 12, 1145 (1997)Google Scholar
14 Abe, K., Komatsu, S., Yanase, N., Sana, K. and Kawakuba, T.; Jpn. J. Appl. Phys. 36, 5846 (1997)Google Scholar
15 Hayashi, T., Ohji, N., Hirihara, K., Fukunaga, T. and Maiwa, H.; Jpn. J. App. Phys. 32, 4092 (1993)Google Scholar