Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T01:23:27.520Z Has data issue: false hasContentIssue false

Influence of Core-Shell Architecture Parameters on Thermal Conductivity of Si-Ge Nanowires

Published online by Cambridge University Press:  13 March 2015

Sevil Sarikurt
Affiliation:
Department of Physics, Faculty of Science, Dokuz Eylul University, Izmir, 35390, TURKEY Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843-3003, USA
Cem Sevik
Affiliation:
Department of Mechanical Engineering, Faculty of Engineering, Anadolu University, Eskisehir, 26555, TURKEY
Alper Kinaci
Affiliation:
Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843-3003, USA Argonne National Laboratory, Argonne, IL 60439, USA
Justin B. Haskins
Affiliation:
NASA Ames Research Center, Moffett Field, CA 94035, USA Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3122
Tahir Cagin
Affiliation:
Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843-3003, USA Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3122
Get access

Abstract

In this work, we investigate the influence of the core-shell architecture on nanowire (1D) thermal conductivity targeting to evaluate its validity as a strategy to achieve a better thermoelectric performance. To obtain the thermal conductivity values, equilibrium molecular dynamic simulations is applied to Si and Ge systems that are chosen to form core-shell nanostructures. To explore the parameter space, we have calculated thermal conductivity values of the Si-core/Ge-shell and Ge-core/Si-shell nanowires at different temperatures for different cross-sectional sizes and different core contents. Our results indicate that (1) increasing the cross-sectional area of pristine Si and pristine Ge nanowire increases the thermal conductivity (2) increasing the Ge core size in the Si-core/Ge-shell structure results in a decrease in the thermal conductivity values at 300 K (3) thermal conductivity of the Si-core/Ge-shell nanowires demonstrates a minima at specific core size (4) no significant variation in the thermal conductivity observed in nanowires for temperature values larger than 300 K (5) the predicted thermal conductivity around 10 W m−1K−1 for the Si and Ge core-shell architecture is still high to get desired ZT values for thermoelectric applications. On the other hand, significant decrease in thermal conductivity with respect to bulk thermal conductivity of materials and pristine nanowires proves that employing core–shell architectures for other possible thermoelectric material candidates would serve valuable opportunities to achieve a better thermoelectric performance.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hicks, L. D. and Dresselhaus, M. S., Phys. Rev. B, 47(24), 1663116634 (1993).CrossRefGoogle Scholar
Hicks, L. D. and Dresselhaus, M. S., Phys. Rev. B, 47, 16631(R) (1993).CrossRefGoogle Scholar
Hicks, L. D. and Dresselhaus, M. S., Phys. Rev. B, 47, 12727 (1993).CrossRefGoogle Scholar
Li, D., Wu, Y., Fan, R., Yang, P. and Majumdar, A., Appl. Phys. Lett., 83(15), 31863188 (2003).CrossRefGoogle Scholar
Minnich, A. J., Dresselhaus, M. S., Ren, Z. F. and Chen, G., Energy Environ. Sci., 2, 466479 (2009).CrossRefGoogle Scholar
Collins, P. G., Bando, H. and Zettl, A., Nanotechnology, 9(3), 153 (1998).CrossRefGoogle Scholar
Cui, Y. and Lieber, C. M., Science, 291(5505), 851853 (2001).CrossRefGoogle Scholar
Dresselhaus, M.S., Lin, Y.-M., Cronin, S.B., Rabin, O., Black, M.R., Dresselhaus, G. and Koga, T., Semiconductors and Semimetals, 71, 1121 (2001).CrossRefGoogle Scholar
Yang, P., Wu, Y. and Fan, R., International Journal of Nanoscience, 1(01), 139 (2002).CrossRefGoogle Scholar
Boukai, A. I., Bunimovich, Y., Tahir-Khelil, J., Yu, J. K., Goddard, W. A. III and Heath, J. R., Nature, 451, 168171 (2008).Google Scholar
Vining, C. B., J. Appl. Phys., 69(1), 331341 (1991).CrossRefGoogle Scholar
Lu, W., Xiang, J., Timko, B. P., Wu, Y. and Lieber, C. M., Proc. Natl. Acad. Sci. U.S.A, 102(29), 1004610051 (2005).CrossRefGoogle Scholar
Xiang, J., Lu, W., Hu, Y., Wu, Y., Yan, H. and Lieber, C. M., Nature, 441(7092), 489493 (2006).CrossRefGoogle Scholar
Li, D., Wu, Y., Kim, P., Shi, L., Yang, P. and Majumdar, A, Appl. Phys. Lett., 83(14), 29342936 (2003).CrossRefGoogle Scholar
Wingert, M. C., Chen, Z. C. Y., Dechaumphai, E., Moon, J., Kim, J. H., Xiang, J., Chen, R. K., Nano Letter, 11(12), 55075513 (2011).CrossRefGoogle Scholar
Haskins, J. B., Kinaci, A. and Çağın, T., Nanotechnology, 22, 155701 (2011).CrossRefGoogle Scholar
Volz, S. G. and Chen, G., Appl. Phys. Lett., 75(14), 20562058 (1999).CrossRefGoogle Scholar
Allen, M. P. and Tildesley, D. J., Computer Simulation of Liquids, (Oxford University Press, Oxford, UK, 1987).Google Scholar
Rapaport, D. C., The Art of Molecular Dynamics Simulation, (Cambridge University Press, Cambridge, UK, 2004).CrossRefGoogle Scholar
Donadio, D. and Galli, G., Nano Letters, 10(3), 847851 (2010).CrossRefGoogle Scholar
Tersoff, J., Phys. Rev. B, 39(8), 55665568 (1989).CrossRefGoogle Scholar
Hu, M., Giapis, K. P., Goicochea, J. V., Zhang, X and Poulikakos, D., Nano Letters, 11(2), 618623 (2011).CrossRefGoogle Scholar
Hu, M., Zhang, X., Giapis, K. P. and Poulikakos, D., Phys. Rev. B, 84(8), 085442 (2011).CrossRefGoogle Scholar
Kubo, R., J. Phys. Soc. JPN, 12(6), 570586 (1957).CrossRefGoogle Scholar
Zwanzig, R., Annu. Rev. Phys. Chem., 16(1), 67102 (1965).CrossRefGoogle Scholar
Helfand, E., Phys. Rev., 119(1), 19 (1960).CrossRefGoogle Scholar
Kinaci, A., Haskins, J. B. and Çağın, T., J. Chem. Phys., 137(1), 014106 (2012).CrossRefGoogle Scholar
Haskins, J. B., Kinaci, A., Sevik, C. and Çağın, T., J. Chem. Phys., 140(24), 244112 (2014).CrossRefGoogle Scholar
Sevik, C., Kinaci, A., Haskins, J. B. and Çağın, T., Phys. Rev. B, 84(8), 085409 (2011).CrossRefGoogle Scholar
Kinaci, A., Haskins, J. B., Sevik, C., and Çağın, T., Phys. Rev. B, 86(11), 115410 (2012).CrossRefGoogle Scholar
Haskins, J., Kinaci, A., Sevik, C., Sevinçli, H., Cuniberti, G., and Çağın, T., ACS Nano, 5(5), 37793787 (2011).CrossRefGoogle Scholar
Sevik, C., Sevinçli, H., Cuniberti, G., and Çağın, T., Nano Letters, 11(11), 49714977 (2011).CrossRefGoogle Scholar
Plimpton, S., J. Comput. Phys., 117(1), 119 (1995).CrossRefGoogle Scholar
He, Y., Savic, I., Donadio, D. and Galli, G., Phys. Chem. Chem. Phys., 14, 1620916222 (2012).CrossRefGoogle Scholar
Che, J., Çağın, T., Goddard, W., Nanotechnology, 11, 6569 (2000).CrossRefGoogle Scholar
Glassbrenner, C. J. and Slack, G. A., Phys. Rev., 134, A1058A1069 (1964).CrossRefGoogle Scholar
Stuckes, A. D., Philosophical Magazine, 49(5), 8499 (1960).CrossRefGoogle Scholar
Shanks, H. R., Maycock, P. D., Sidles, P. H. and Danielson, G. C., Phys. Rev., 130(5), 17431748 (1963).CrossRefGoogle Scholar
Joffe, A. F., Can. J. Phys., 34(12A), 13421355 (1956).CrossRefGoogle Scholar
Abeles, B., Beers, D. S., Cody, G. D. and Dismukes, J. P., Phys. Rev., 125, 4446 (1962).sCrossRefGoogle Scholar