Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-28T23:48:00.254Z Has data issue: false hasContentIssue false

In Situ Ultrahigh Vacuum Friction Measurement and Wear Track Analysis of Ion Implanted 304 Stainless Steel*

Published online by Cambridge University Press:  26 February 2011

Larry E. Pope
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185.
David M. Follstaedt
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185.
James A. Knapp
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185.
J. Charles Barbour
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185.
Get access

Abstract

The dual ion implantation of Ti and C into 304 stainless steel has been found to reduce friction and wear in ultrahigh vacuum (UHV). The implantation treatment producing this result, 4.6 × 1017 Ti/cm2 (180 keV) followed by 2.0 × 1017 C/cm2 (50 keV), produced TiC precipitates dispersed in an amorphous surface layer. Friction and wear track compositions were measured in situ with a scanning Auger microprobe without removing the pin from the track. This treatment decreased the friction coefficient from 1.2 to 0.6–0.8 and the wear track width from 342 μm to 225 pm after 1000 cycles. Relative to unimplanted 304, wear tracks formed in UHV and air on implanted ‘304 had more N and less C. Oxygen and the metallic elements were similar in concentration, except for the presence of implanted Ti. Friction coefficients measured in air were less than those in UHV; track composition suggests that oxides or adsorbed moisture helped lower the friction in air.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This work was supported by the U. S. Department of Energy (DOE), under Contract Number DE-AC04-76-DP00789.

References

REFERENCES

1. Pope, L. E., Yost, F. G., Follstaedt, D. M., Knapp, J. A. and Picraux, S. T. in Wear of Materials 1983, edited by Ludema, K. C. (ASME, NY 1983) pp. 280287.Google Scholar
2. Carosella, C. A., Singer, I. L., Bowers, R. C. and Gossett, C. R. in Ion Implantation Metallurgy, edited by Preece, C. M. and Hirvonen, J. K. (AIME, Warrendale, Pa, 1980) p. 103.Google Scholar
3. Fisher, T. E., Luton, M. J., Williams, J. M., White, C. W. and Appleton, B. R., ASLE Trans. 16, 466 (1983).CrossRefGoogle Scholar
4. Ng, L. and Naerheim, Y., presented at the 1987 Ball Bearing Technical Symposium, Orlando, FL, 1987 (unpublished).Google Scholar
5. Pope, L. E., Picraux, S. T., Follstaedt, D. M., Knapp, J. A. and Yost, F. G., J. Mater. Energy Systems 7, 27 (1985).CrossRefGoogle Scholar
6. Follstaedt, D. M., Yost, F. G. and Pope, L. E. in Ion Implantation and Ion Beam Processing of Materials, edited by Hubler, G. K., Holland, O. W., Clayton, C. R. and White, C. W. (Mater. Res. Soc. Proc. 27, North-Holland, NY 1984) pp. 655660.Google Scholar
7. Follstaedt, D. M., Yost, F. G., Pope, L. E., Picraux, S. T. and Knapp, J. A., Appl. Phys. Lett. 43, 358 (1983).CrossRefGoogle Scholar
8. Follstaedt, D. M., Pope, L. E., Knapp, J. A., Picraux, S. T. and Yost, F. G., Thin Solid Films 107, 259 (1983).CrossRefGoogle Scholar
9. Follstaedt, D. M., Knapp, J. A., Pope, L. E., Yost, F. G. and Picraux, S. T., Appl. Phys. Lett. 45, 529 (1984); 46, 207(E) (1985).CrossRefGoogle Scholar
10. Singer, I. L., Carosella, C. A. and Reed, J. R., Nucl. Instrum. Meth. 182/183, 923 (1981).CrossRefGoogle Scholar
11. Singer, I. L. and Jeffries, R. A. in Ion Implantation and Ion Beam Processing of Materials, edited by Hubler, G. K., Holland, O. W., Clayton, C. R. and White, C. W. (Mater. Res. Soc. Proc. 27, North-Holland, NY 1984) pp. 673678.Google Scholar
12. Knapp, J. A., Follstaedt, D. M. and Doyle, B. L., Nucl. Inst. Meth. 87/8, 38 (1985).CrossRefGoogle Scholar
13. Borders, J. A. and Harris, J. M., Nucl. Inst. Meth. 149, 279 (1978).CrossRefGoogle Scholar
14. Doyle, B. L. and Peercy, P. S., Appl. Phys. Lett. 34, 811 (1979).CrossRefGoogle Scholar
15. Hoffmann, B., Baumann, H., Rauch, F. and Bethge, K., Nucl. Inst. Meth. B28, 336 (1987).CrossRefGoogle Scholar
16. Stuart, H. and Ridley, N., J. Iron and Steel Inst., London, 208, 1087 (1970).Google Scholar
17. Follstaedt, D. M., J. AppI. Phys. 51, 1001 (1980).CrossRefGoogle Scholar
18. Toth, L. E., Transition Metal Carbides and Nitrides (Academic Press, New York, 1971).Google Scholar
19. McDonald, T. G., Peebles, D. E., Pope, L. E. and Peebles, H. C., Rev. Sci. Instrum. 58, 593 (1987).CrossRefGoogle Scholar
20. Davis, L. E., MacDonald, N. C., Palmberg, P. W., Riach, G. E. and Weber, R. E., Handbook of Auger Electron Spectroscopy, 2nd Ed. (Physical Electronics Division, Perkin-Elmer Corp., Eden Prairie, MN, 1976).Google Scholar
21. Peebles, D. E. and Pope, L. E., J. Vac. Sci. Technol., submitted for publication (1987).Google Scholar
22. Matthews, W. L. N., Paterson, P. J. K. and Wagenfeld, H. K., Applications Surface Sci. 15, 281 (1983).CrossRefGoogle Scholar