Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T15:26:54.917Z Has data issue: false hasContentIssue false

In situ Preparation of Gold Nanoparticles in Alginate Gel Matrix by Solution Plasma Sputtering Process

Published online by Cambridge University Press:  20 June 2013

Anyarat Watthanaphanit*
Affiliation:
EcoTopia Science Institute, Nagoya University, Nagoya 464-8603, Japan Green Mobility Collaborative Research Center, Nagoya University, Nagoya 464-8603, Japan
Gasidit Panomsuwan
Affiliation:
Department of Materials, Physics and Energy Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
Nagahiro Saito
Affiliation:
Green Mobility Collaborative Research Center, Nagoya University, Nagoya 464-8603, Japan Department of Materials, Physics and Energy Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
Get access

Abstract

The rapid synthesis of gold nanoparticles (AuNPs) was done by solution plasma sputtering (SPS) process in the presence of a biopolymer, sodium alginate. We utilized the alginate polymer in order to meet three important requirements: (1) to promote the generation of plasma in liquid environment, (2) to provide colloidal stability, and (3) to render biocompatibility to the AuNPs. The effect of sodium alginate concentration (varied as 0.2, 0.5, and 0.9 %w/v) and plasma sputtering time on the particle size and the physical absorption property of the AuNPs were studied. The results indicated that preparation of AuNPs in alginate gel matrix was successful by the SPS process in one step without any reducing agents. This technique has high potential as a novel strategy to produce AuNPs suspended in alginate aqueous solution which is suitable for biomedical application.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Salata, V., J. Nanobiotechnol. 2, 16 (2004).CrossRefGoogle Scholar
Cheng, Y., Stakenborg, T., Dorpe, P. V., Lagae, L., Wang, M., Chen, H., and Borghs, G., Anal. Chem. 83, 13071314 (2011).CrossRefGoogle Scholar
Brown, S. D., Nativo, P., Smith, J. A., Stirling, D., Edwards, P. R., Venugopal, B., Flint, D. J., Plumb, J. A., Graham, D., and Wheate, N. J., J. Am. Chem. Soc. 132, 46784684 (2010).CrossRefGoogle Scholar
Kennedy, L. C., Bickford, L. R., Lewinski, N. A., Coughlin, A. J., Hu, Y., Day, E. S., West, J. L., and Drezek, R. A., Small 7, 169183 (2011).CrossRefGoogle Scholar
Sonavane, G., Tomoda, K., and Makino, K., Colloid Surface B 66, 274280 (2008).CrossRefGoogle Scholar
Dykmana, L. and Khlebtsov, N., Chem. Soc. Rev. 41, 22562282 (2012).CrossRefGoogle Scholar
Hu, X., Cho, S. P., Takai, O., and Saito, N., Cryst. Growth Des. 12, 119123 (2012).CrossRefGoogle Scholar
Chen, S., Wua, Y., Mi, F., Lin, Y., Yu, L., and Sung, H., J. Control Release 96, 285300 (2004).10.1016/j.jconrel.2004.02.002CrossRefGoogle Scholar
Fernandes, T. G., Kwon, S., Lee, M., Clark, D. S., Cabral, J. M. S., and Dordick, J. S., Anal. Chem. 80, 66336639 (2008).CrossRefGoogle Scholar
Watthanaphanit, A. and Saito, N., Polymer Degrad. Stabil. 98, 10721080 (2013).CrossRefGoogle Scholar
Huang, H. and Yang, X., Carbohydr. Res. 339, 26272631 (2004).CrossRefGoogle Scholar
El-Brolossy, T. A., Abdallah, T., Mohamed, M. B., Abdallah, S., Easawi, K., Negm, S., and Talaat, H., Eur. Phys. J. Special Topics 153, 361364 (2008).CrossRefGoogle Scholar
Pal, A., Esumi, K., and Pal, T., J. Colloid Interface Sci. 288, 396401 (2005).CrossRefGoogle Scholar
Anh, A. T., Phu, D. V., Duy, N. N., Du, B. D., and Hien, N. Q., Radiat. Phys. Chem. 79, 405408 (2010).CrossRefGoogle Scholar