No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
Studies on the electronic structure of carbon nanotube (CNT) are of much importance because of its efficient utilization in electronic vacuum devices [1]. These CNTs have many applications such as field emission display (FED), LCD backlight units, microwave amplifiers, lighting lamps, x-ray sources and so on. One of these applications is the electron emitter for x-ray source. In order to obtain x-ray images of relatively hard instruments or components such as PCB board or machine tools, high quantity of x-ray current is generally required. In this study, we report that the current density of x-ray source can be greatly enhanced by using the CNT emitter as a cathode. In general, the emission current of CNT emitter is very sensitive to gap distance between CNT emitter and grid metal mesh. In addition, the emission current is appeared to be different with respect to the kinds of metal meshes and their sizes employed in the measurement. Extensive results of these were reported in our recent works [2]. For example, as the distance between CNT emitter and grid metal mesh was getting shorter, the current density of the triode was getting larger. Detailed parameters and corresponding results were presented and some preliminary x-ray images were obtained and discussed in this study.