Published online by Cambridge University Press: 15 June 2012
LiBH4 and MgH2 both have high gravimetric and volumetric hydrogen storage densities. Unfortunately, their commercial application is prevented by high thermal stability and unfavorable thermodynamic properties. Combining the two hydrides leads to a new decomposition pathway with suitable enthalpy of reaction. However, the kinetics for hydrogen release remains an obstacle but can be improved by nanoconfinement in nano porous carbon materials. Here we report on nanoconfinement of 2LiBH4-MgH2 in Ni functionalized carbon aerogels. 11B MAS NMR reveals that the nanoconfined hydrides react reversibly with hydrogen whereas simultaneous differential scanning calorimetry and mass spectroscopy clearly show that nanoconfinement facilitates lower hydrogen release temperatures than ball milling. Furthermore, Ni functionalization of the nanoporous aerogel leads to even lower hydrogen release temperatures from nanoconfined 2LiBH4-MgH2.