Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-25T22:39:40.915Z Has data issue: false hasContentIssue false

Imprint of La-Sr-Co-O/Pb-La-Zr-Ti-O/La-Sr-Co-O Heterostructures Grown by Pulsed Laser Deposition

Published online by Cambridge University Press:  15 February 2011

J. Lee
Affiliation:
Bellcore, Red Bank, New Jersey 07701
R. Ramesh
Affiliation:
Bellcore, Red Bank, New Jersey 07701
V.G. Keramidas
Affiliation:
Bellcore, Red Bank, New Jersey 07701
Get access

Abstract

La-Sr-Co-O(LSCO)/Pb-La-Zr-Ti-O(PLZT)/La-Sr-Co-O heterostructures with different crystalline quality have been grown on LaAlO3 and Si with a bismuth titanate template layer. Imprint of the heterostructures are investigated in comparison with fatigue and retention. Oxygen ambient during cooling the heterostructures was also varied to investigate the imprint. With consideration of the switching behavior caused by imprint, imprint behavior was deconvoluted from fatigue and retention. In epitaxial PLZT capacitors grown on LaAlO3, imprint behavior was found to be significantly dependent on the oxygen ambient. As the oxygen ambient became more reducing, the capacitors developed more voltage asymmetry in hysteresis loops and a more preferred polarization state directed towards the top electrode. On the other hand, oriented PLZT capacitors exhibited less pronounced effect of the oxygen ambient on the imprint behavior.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See for example, Proc. of 4th Inter. Symp. on Integrated Ferroelectrics, Ed. Paz de Araujo, C.A., University of Colorado, Monterey, CA, March 1992;Google Scholar
Mat. Res. Soc. Proc. 310, Eds. Myers, E.R., Tuttle, B.A., Desu, S.B. and Larsen, P.K., Materials Research Society, Pittsburgh, 1993.Google Scholar
2. Scott, J.F. and Paz de Araujo, C.A., Science 246, 1400 (1989);Google Scholar
Dey, S. and Zuleeg, R., Ferroelectrics 108, 37 (1990).Google Scholar
3. Sinharoy, S., Buhay, H., Lampe, D.R. and Francombe, M.H., J. Vac. Sci. Technol. A10, 1554 (1992).Google Scholar
4. Eaton, S.S., Butler, D.B., Parris, M., Wilson, D. and Mcneillie, H., Proc. of the IEEE Inter. Solid State Conf., San Francisco, California (IEEE, Piscataway, NJ, 1988), p130.Google Scholar
5. Womack, R. and Tolsch, D., Proc. of the IEEE Inter. Solid State Conf., San Francisco, California (IEEE, Piscataway, NJ, 1989), p242;Google Scholar
Moazzami, R., Hu, C. and Shepherd, W., IEEE Electron Device Lett. 11, 454 (1990).Google Scholar
6. Ramesh, R., Chan, W.K., Wilkens, B., Gilchrist, H., Sands, T., Tarascon, J.M., Keramidas, V.G., Fork, D.K., Lee, J. and Safari, A., Appl. Phys. Lett. 61, 1537 (1992).Google Scholar
7. Lee, J., Johnson, L., Safari, A., Ramesh, R., Sands, T., Gilchrist, H. and Keramidas, V.G., Appl. Phys. Lett. 63, 27 (1993).Google Scholar
8. Kwok, C.k., Vijay, D.P., Desu, S.B., Parikh, N.R. and Hill, E.A., Proc. 4th Inter. Symp. Integrated Ferroelectrics, Monterey, California, March 1992, p412.Google Scholar
9. Bernstein, S.D., Wong, T.Y., Kisler, Y. and Tustison, R.W., J. Mater. Res. 8, 12 (1993).Google Scholar
10. Auciello, O., Gifford, K.D., and Kingon, A.I., Appl. Phys. Lett. 64, 2873 (1994).Google Scholar
11. Ramesh, R., Gilchrist, H., Sands, T., Keramidas, V.G., Haakenaasen, R. and Fork, D.K., Appl. Phys. Lett. 63, 3592 (1993).Google Scholar
12. Lichtenwalner, D.J., Dat, R., Auciello, O. and Kingon, A.I., Ferroelectrics 152 (1994).Google Scholar
13. Al Shareef, H.N., Bailer, K.R., Auciello, O., and Kingon, A.I., in press, Appl. Phys. Lett., (1994)Google Scholar
14. Dat, R., Lichtenwalner, D.J., Auciello, O. and Kingon, A.I., Appl. Phys. Lett., 64, 2673 (1994).Google Scholar
15. Ramesh, R., Lee, J., Sands, T., Keramidas, V.G., and Auciello, O., Appl. Phys. Lett. 64, 2511 (1994).Google Scholar
16. Lee, J., Ramesh, R., Keramidas, V.G., Pike, G.E., Warren, W.L. and Evans, J.T. Jr, to be published in Appl. Phys. Lett.Google Scholar
17. Pike, G.E., Warren, W.L., Dimos, D., Tuttle, B.A., Ramesh, R., Lee, J., Keramidas, V.G. and Evans, J.T. Jr, to be published in Appl. Phys. Lett.Google Scholar
18. Ramesh, R., Gilchrist, H., Sands, T., Keramidas, V.G., Haakenaasen, R. and Fork, D.K., Appl. Phys. Lett. 63, 3592 (1993).Google Scholar
19. Lee, J., Ramesh, R., Dutta, B., Ravi, T.S., Sands, T. and Keramidas, V.G., in press, Integrated Ferroelectrics (1994).Google Scholar
20. Nasby, R.D., Schwank, J.R., Rodgers, M.S., and Miller, S.L., Proc. of 3th Inter. Symp. on Integrated Ferroelectrics, Ed. Paz de Araujo, C.A., University of Colorado, Colorado Springs, CO, March 1991, p376.Google Scholar
21. Smyth, D.M., Prog. Solid St. Chem. 15, 145 (1984).Google Scholar
22. Waser, R.M., J. Am. Ceram. Soc., 72, 2234 (1989).Google Scholar
23. Smyth, D.M., Ferroelectrics, 116, 117 (1991).Google Scholar