Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T13:49:44.091Z Has data issue: false hasContentIssue false

Impedance spectroscopy study of ionic diffusion in polycrystalline ZrO2:Y2O3 solid solution

Published online by Cambridge University Press:  17 March 2011

Fábio C. Fonseca
Affiliation:
Multidisciplinary Center for Development of Ceramic Materials CCTM-Energy and Nuclear Research Institute CP 11049, Pinheiros, S. Paulo, SP, Brazil, 05422-970 muccillo@usp.br
Eliana N. S. Muccillo
Affiliation:
Multidisciplinary Center for Development of Ceramic Materials CCTM-Energy and Nuclear Research Institute CP 11049, Pinheiros, S. Paulo, SP, Brazil, 05422-970 muccillo@usp.br
R. Muccillo
Affiliation:
Multidisciplinary Center for Development of Ceramic Materials CCTM-Energy and Nuclear Research Institute CP 11049, Pinheiros, S. Paulo, SP, Brazil, 05422-970 muccillo@usp.br
Get access

Abstract

The ZrO2:Y2O3 solid solution formation has been followed by impedance spectroscopy and X-ray analysis. The experimental sequence, after mixing 8 mol% Y2O3 to ZrO2, was: attrition milling the mixture, drying, weighing, cold pressing, thermally treating at several different temperatures and times, performing the X-ray diffraction measurements at room temperature, applying metallic electrodes, and performing the impedance spectroscopy measurements in the 300°C-600°C temperature range. A good correlation was found between the decrease of the yttria main diffraction line and the increase of the stabilized zirconia main diffraction line, showing that solid solution is attained at the expenses of yttria, as expected. The impedance spectroscopy data Z(ω, T, t) show that the bulk response follows a t1/2 law, an evidence of yttrium diffusion to zirconia. Moreover, a relationship is found between the bulk resistivity and the elimination of ion blockers for increasing sintering times. The result allowed for the determination of the activation energy for the diffusion of the slowest diffusing species (Zr4+) in ZrO2:Y2O3.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Science and Technology of Zirconia I, Advances in Ceramics, vol. 3, edited by Heuer, A. H., Hobbs, L. W., (Am. Ceram. Soc., Columbus, Ohio, 1981).Google Scholar
[2] Solid Electrolytes and their applications, edited by Subbarao, E. C., (Plenum Press, New York, 1980).Google Scholar
[3] Fouletier, J., Seinera, H. and Kleitz, M., J. Appl. Electrochem. 5, 111 (1975).Google Scholar
[4] Chu, S. H. and Seitz, S. A., J. Sol. State Chem. 23, 297 (1978).Google Scholar
[5] Singhal, S. C., in Sixth Int. Symp. Solid Oxide Fuel Cells (SOFC VI), edited by Singhal, S. C., Dokiya, M., (The Electrochemical Soc., Inc., 1999) p. 39.Google Scholar
[6] Subbarao, E. C. in Science and Technology of Zirconia I, Advances in Ceramics, vol. 3, edited by Heuer, A. H., Hobbs, L. W., (The Am. Ceram. Soc., Columbus, Ohio, 1981) p. 1.Google Scholar
[7] Kroger, F. A. and Vink, H. J., Solid State Physics, Vol. 3, edited by Seitz, F., Turnbull, D., (Academic Press, NY, 1956) p. 307.Google Scholar
[8] Atkinson, A., in Materials Science and Technology, a comprehensive treatment, edited by Cahn, R. W., Haasen, P., Kramer, E. J., Structure and properties of Ceramics, Vol. 11, edited by Swain, M., (VCH Verlagsgesellschaft mbH, Weinheim, Germany, 1994) p. 295.Google Scholar
[9] Lakki, A., Herzog, R., Weller, M., Schubert, H., Reetz, C., Görke, O., Kilo, M. and Borchardt, G., J. Eur. Ceram. Soc. 20, 285 (2000).Google Scholar
[10] Rothman, S. J., in Diffusion in Crystalline Solids, edited by Murch, G. E., Nowick, A. S.. (Academic Press, Orlando, Florida, USA, 1984).Google Scholar
[11] Matzke, Hj., in Nonstoichiometric Oxides, edited by Sorensen, O. T., (Academic Press, N. York, USA, 1981).Google Scholar
[12] Kilo, M., Borchardt, G., Lesage, B., Kaïtasov, O., Weber, S. and Scherrer, S., J. Eur. Ceram. Soc. 20, 2069 (2000).Google Scholar
[13] Bauerle, J. E., J. Phys. Chem. Sol. 30, 2657 (1969).Google Scholar
[14] Kleitz, M., Bernard, H., Fernandez, E. and Schouler, E., in Science and Technology of Zirconia I, Advances in Ceramics, vol. 3, edited by Heuer, A. H., Hobbs, L. W., (The Am. Ceram. Soc., Columbus, Ohio, 1981) p. 310.Google Scholar
[15] Raistrick, I. D. in Impedance Spectroscopy - Emphasizing Solid Material and Systems, edited by Macdonald, J. R., (Wiley Interscience, N. York, 1987) p. 29.Google Scholar
[16] Kleitz, M. and Kennedy, J. H. in Fast Ion Transport in Solids, edited by Vashishta, P., Mundy, J. N., Shenoy, G. K., (Elsevier North Holland, 1979) p. 185.Google Scholar
[17] Garvie, R. C. and Nicholson, P. S., J. Am. Ceram. Soc. 55, 303 (1972).Google Scholar
[18] Smigelskas, A. D. and Kirkendall, E. O., Trans. Am. Inst. Min. Met. Eng. 171, 130 (1947).Google Scholar
[19] Roosmalen, J. A. M. van and Cordfunke, E. H. P., Solid State Ionics 52, 303 (1992).Google Scholar
[20] Moghadam, F. K., Yamashita, T. and Stevenson, D. A., in Science and Technology of Zirconia I, Advances in Ceramics, vol. 3, edited by Heuer, A. H., Hobbs, L. W., (The Am. Ceram. Soc., Columbus, Ohio, 1981) p. 364.Google Scholar
[21] Badwal, S. P. S., Solid State Ionics 76, 67 (1995).Google Scholar
[22] Steil, M. C., Thévenot, F. and Kleitz, M., J. Electrochem. Soc. 144, 390 (1997).Google Scholar
[23] Ioffe, A. I., Inozemtzev, M. V., Lipilin, A. S., Perfilev, M. V. and Karpachov, S. V., Pys. Stat. Solidi A 30, 87 (1975).Google Scholar
[24] Verkerk, M. J., Middelhuis, B. J. and Burggraaf, A. J., Solid State Ionics 6, 159 (1982).Google Scholar
[25] Verkerk, M. J., Winnubst, A. J. A. and Burggraaf, A. J., J. Mat. Sci. 17, 3113 (1982).Google Scholar
[26] Schouler, E. J. L., Mesbahi, M. and Vitter, G., Solid State Ionics 9–10, 989 (1983).Google Scholar
[27] Badwal, S. P. S. and Drennan, J., J. Mat. Sci. 22, 3231 (1987).Google Scholar
[28] M. Gödickemeier, Michel, B., Orliukas, A., Bohac, P., Sasaki, K., Gauckler, L., Heinrich, H., Sxhwander, P., Kortorz, G., Hofmann, H. and Frei, O., J. Mat. Res. 9, 1228 (1994).Google Scholar
[29] Aoki, M., Chiang, Y.-M., Kosacki, I., Lee, L. J.-R., Tuller, H. and Lu, Y., J. Am. Ceram. Soc. 79, 1169 (1996).Google Scholar
[30] Florio, D. Z. and Muccillo, R., Solid State Ionics 123, 301 (1999).Google Scholar
[31] Chien, F. R. and Heuer, A. H., Phil. Mag. A 73, 681 (1996).Google Scholar