Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T13:47:15.060Z Has data issue: false hasContentIssue false

Impact of the Growth Polar Direction on the Optical Properties of Gan Films Grown by Metalorganic Vapor Phase Epitaxy

Published online by Cambridge University Press:  17 March 2011

A. Setoguchi
Affiliation:
Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan On leave from Department of Electrical Engineering, Science University of Tokyo, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
K. Yoshimura
Affiliation:
Department of Electrical and Electronic Engineering, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan
M. Sumiya
Affiliation:
Department of Electrical and Electronic Engineering, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan
A. Uedono
Affiliation:
Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
S. F. Chichibu
Affiliation:
Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan On leave from Department of Electrical Engineering, Science University of Tokyo, 2641 Yamazaki, Noda, Chiba 278-8510, Japan Contacting author, chichibu@bk.tsukuba.ac.jp
Get access

Abstract

The growth polar direction during metalorganic chemical vapor phase epitaxy of wurtzite GaN films was shown to affect the optical properties in terms of impurity and vacancy-type defect incorporation during the growth. The GaN film grown towards the Ga- face (0001) (+c polarity) exhibited clear excitonic features in its optical absorption and luminescence spectra up to room temperature. Conversely, the film with the N-face (000-1) (-c polarity) exhibited a broad emission band, which is located in the broadened absorption tail. The Stokes shift remained even at 300 K. The difference between the two was explained in terms of the presence of impurity-induced band tail states in –c GaN due to increased impurity density and enhanced incorporation of large volume vacancy-type defects, which were confirmed by secondary ion mass spectrometry [Sumiya et al., Appl. Phys. Lett. 76, 2098 (2000)] and monoenergetic slow positron annihilation technique.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1For a review see, for example, Strite, S. and Morkoc, H., J. Vac. Sci. Technol. B 10, 1237 (1992); S. Nakamura and G. Fasol, The Blue Laser Diode, (Springer, Berlin, 1997); I. Akasaki and H. Amano, Jpn. J. Appl. Phys. 36, 5393 (1997).Google Scholar
2 Mukai, T., Narimatsu, H., and Nakamura, S., Jpn. J. Appl. Phys. 37, L479 (1998).Google Scholar
3 Bernardini, F. and Fiorentini, V., Phys. Rev. B 57, R9427 (1998); Phys. Stat. Sol. (b) 216, 391 (1999).Google Scholar
4 Takeuchi, T., Takeuchi, H., Sota, S., Sakai, H., Amano, H., and Akasaki, I., Jpn. J. Appl. Phys. 36, L177 (1997).Google Scholar
5 Chichibu, S., Azuhata, T., Sota, T., and Nakamura, S., Appl. Phys. Lett. 69, 4188 (1996); S. F. Chichibu, T. Sota, K. Wada, S. P. DenBaars, and S. Nakamura, MRS Internet J. Nitride Semicond. Res. 4S1, G2.7 (1999).Google Scholar
6 Shur, M., Gelmont, B., and Kahn, M. Asif, J. Electron. Mater. 25, 777 (1995).Google Scholar
7 Ponce, F., Bour, D., Young, W., Saunders, M., and Steeds, J., Appl. Phys. Lett. 69, 337 (1996); L. Romano, J. Northup, and M. O'Keefe, Appl. Phys. Lett. 69, 2394 (1996); J. Rouviere, J. Weyher, M. Seelmann-Eggerbert, and S. Porowski, Appl. Phys. Lett. 73, 668 (1998); S. Fuke, H. Teshigawara, K. Kuwahara, Y. Takano, T. Ito, M. Yanagihara, and K. Ohtsuka, J. Appl. Phys. 83, 764 (1998).Google Scholar
8 Hellman, E., MRS Internet J. Nitride Semicond. Res. 3, 11 (1998).Google Scholar
9 Sumiya, M., Tanaka, M., Ohtsuka, K., Fuke, S., Ohnishi, T., Ohkubo, I., Yoshimoto, M., Koinuma, H., and Kawasaki, M., Appl. Phys. Lett. 75, 674 (1999).Google Scholar
10 Sumiya, M., Yoshimura, K., Ohtsuka, K., and Fuke, S., Appl. Phys. Lett. 76, 2098 (2000).Google Scholar
11For a review see, for example, Krause-Rehberg, R. and Leipner, H. S., Positron Annihilation in Semiconductors, Solid-State Sciences 127 (Springer-Verlag, Berlin, 1999).Google Scholar
12experimental apparatus and analytical method used in this study are the same as those used in Uedono, A., Tanigawa, S., Ohshima, T., Itoh, H., Yoshikawa, M., Nashiyama, I., Frank, T., Pensl, G., Suzuki, R., Ohdaira, T., and Mikado, T., J. Appl. Phys. 87, 4119 (2000).Google Scholar
13 Dingle, R., Sell, D., Stokowski, S., and Ilegems, M., Phys. Rev. B 4, 1211 (1971); B. Monemar, Phys. Rev. B 10, 676 (1974).Google Scholar
14 Chichibu, S., Azuhata, T., Sota, T. and Nakamura, S., J. Appl. Phys. 79, 2784 (1996); S. Chichibu, K. Torii, T. Deguchi, T. Sota, A. Setoguchi, H. Nakanishi, T. Azuhata, and S. Nakamura, Appl. Phys. Lett. 76, 1576 (2000).Google Scholar
15 Goetz, W., Kern, R., Chen, C., Liu, H., Steigerwald, D., and Fletcher, R., Mater. Sci. Eng. B 59, 211 (1998).Google Scholar
16 Setoguchi, A., Chichibu, S. F., and Nakamura, S. (unpublished); also see E. Schubert, I. Goepfert, W. Grieshaber, and J. Redwing, Appl. Phys. Lett. 71, 921 (1997).Google Scholar
17 Uedono, A., Chen, Z. Q., Chichibu, S. F., Sumiya, M., Suzuki, R., Ohdaira, T., Mikado, T., Mukai, T., and Nakamura, S., (unpublished).Google Scholar